gpt2.py 14.2 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import torch
Xingjian Shi's avatar
Xingjian Shi committed
2
import transformers
Jason Phang's avatar
gpt3  
Jason Phang committed
3

4
from tqdm import tqdm
Jason Phang's avatar
gpt3  
Jason Phang committed
5

6
7
8
import torch.nn.functional as F

from lm_eval import utils
9
from lm_eval.api.model import LM, register_model
10

11
12
from accelerate import Accelerator
from itertools import islice
13

14
@register_model("hf-causal", "gpt2")
15
class HFLM(LM):
Fabrizio Milo's avatar
Fabrizio Milo committed
16
17
18
19
20
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
Xingjian Shi's avatar
Xingjian Shi committed
21
        low_cpu_mem_usage=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
22
23
24
25
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
Leo Gao's avatar
Leo Gao committed
26
        super().__init__()
27
28
29
30

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        
        gpus = torch.cuda.device_count()
        if gpus <= 1:
            if device:  
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                print(f"Using device '{device}'")
            else:
                print("Device not specified")
                print(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
47
48
            self._rank = 0
            self._world_size = 1
49

50
51
52
        else:
            self._device = 'cpu'

53
54
55
        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

56
        self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained(
Xingjian Shi's avatar
Xingjian Shi committed
57
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
58
        ).to(self.device)
Leo Gao's avatar
Leo Gao committed
59
        self.gpt2.eval()
Leo Gao's avatar
Leo Gao committed
60

61
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
Fabrizio Milo's avatar
Fabrizio Milo committed
62
            pretrained if tokenizer is None else tokenizer,
63
            revision=revision,
Fabrizio Milo's avatar
Fabrizio Milo committed
64
        )
65

66
        self.vocab_size = self.tokenizer.vocab_size
67

68
        # multithreading and batching
69
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
70

71
        # multigpu support with accelerate
72
73
        if gpus > 1:
            accelerator = Accelerator(device_placement=False)
74
            if gpus > accelerator.num_processes:
75
76
77
78
79
80
81
82
83
84
85
86
                warning = ("WARNING: The number of total GPUs does not match the number of spawned processes. " 
                      "If you would like to use data parallelism, please launch the script "
                      "with 'accelerate launch *script*'. " 
                        "Current run will proceed with single device.")
                print(warning)
                self._rank = 0
                self._world_size = 1
            
            else:
                self.gpt2 = accelerator.prepare(self.gpt2)
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator
87

88
                if self.accelerator.is_local_main_process:
89
                    print(f"Using {gpus} devices with data parallelism")
90

91
92
93
                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
            
94

95
96
97
98
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id
99

100
101
102
103
104
105
106
    @property
    def max_length(self):
        try:
            return self.gpt2.config.n_ctx
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
            return self.gpt2.config.max_position_embeddings
107

108
109
110
    @property
    def max_gen_toks(self):
        return 256
Leo Gao's avatar
Leo Gao committed
111

112
113
    @property
    def batch_size(self):
114
        return self.batch_size_per_gpu
Leo Gao's avatar
Leo Gao committed
115

116
117
118
    @property
    def device(self):
        return self._device
119
120
121
122
123
124
125
126
    
    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
Leo Gao's avatar
Leo Gao committed
127

128
129
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
Fabrizio Milo's avatar
Fabrizio Milo committed
130

131
132
133
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

Leo Gao's avatar
Leo Gao committed
134
135
136
137
138
139
    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
140
        logits returned from the model
Leo Gao's avatar
Leo Gao committed
141
        """
142
        with torch.no_grad():
143
            return self.gpt2(inps)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
144

145
146
    def _model_generate(self, context, max_length, eos_token_id):
        return self.gpt2.generate(
147
            context, max_length=max_length, pad_token_id=eos_token_id, eos_token_id=eos_token_id, do_sample=False
148
149
        )

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

169
170
        extra_pad = []
        numpad_batches = 0
171
        
172
        if self.world_size > 1:
173
            cumulative_batches = 0  # balance token batches among iterators
174
175
            # compute cumlative batches seen per host
            for (string,) in tqdm([req.args for req in requests],disable=True):
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                rolling_token_windows = list(
                    map(
                        utils.make_disjoint_window,
                        utils.get_rolling_token_windows(
                            token_list=self.tok_encode(string),
                            prefix_token=self.eot_token_id,
                            max_seq_len=self.max_length,
                            context_len=1,
                        ),
                    )
                )

                rolling_token_windows = [(None,) + x for x in rolling_token_windows]
                cumulative_batches += len(rolling_token_windows)

191
192
            cumul_batches_ranks = torch.tensor(cumulative_batches, device = self.device)
            gathered_item = self.accelerator.gather(cumul_batches_ranks).cpu().detach().numpy().tolist()
193
194
195

            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
            numpad_batches = max(gathered_item) - gathered_item[self.rank]
196
197
198

            # pad iterators with a pseudodocument 
            extra_pad = [('pad',)] if max(gathered_item) - min(gathered_item) > 0 else []
199

200
        loglikelihoods = []
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        for (string,) in tqdm(extra_pad + [req.args for req in requests],disable=(self.rank != 0)):
            if numpad_batches > 0:
                rolling_token_windows = list(
                    map(
                        utils.make_disjoint_window,
                        utils.get_rolling_token_windows(
                            token_list=[self.eot_token_id]*self.max_length*numpad_batches,
                            prefix_token=self.eot_token_id,
                            max_seq_len=self.max_length,
                            context_len=1,
                        ),
                    )
                )
                
            else:
                rolling_token_windows = list(
                    map(
                        utils.make_disjoint_window,
                        utils.get_rolling_token_windows(
                            token_list=self.tok_encode(string),
                            prefix_token=self.eot_token_id,
                            max_seq_len=self.max_length,
                            context_len=1,
                        ),
                    )
226
227
228
229
230
231
232
233
234
235
                )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

236
            if (numpad_batches > 0) or (string == 'pad'):
237
                numpad_batches = 0 
238

239
240
241
242
243
244
245
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

                string_nll = sum(string_nll)
                loglikelihoods.append(string_nll)
        
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # TODO: automatic (variable) batch size detection for vectorization
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
267
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))), self.batch_size
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        ):
            inps = []
            cont_toks_list = []
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # gpt2    \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )

                # pad length from seq to padding_length
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )

                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
                inplens.append(inplen)

            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):

                # Slice to original seq length
                contlen = len(cont_toks)
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)

    def greedy_until(self, requests):
        # TODO: implement fully general `until` that handles until that are
        #       multiple tokens or that span multiple tokens correctly

        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

        for context, until in tqdm(re_ord.get_reordered()):
            if isinstance(until, str):
                until = [until]

            (primary_until,) = self.tok_encode(until[0])

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)

            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])

            for term in until:
                s = s.split(term)[0]

            res.append(s)
388

389
        return re_ord.get_original(res)