task.py 33.2 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
from lm_eval.api.metrics import (
lintangsutawika's avatar
lintangsutawika committed
23
24
25
26
27
28
29
30
31
    METRIC_REGISTRY,
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
    get_metric,
    get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
32

lintangsutawika's avatar
lintangsutawika committed
33
from lm_eval.logger import eval_logger
34
from lm_eval.prompts import get_prompt
35
36
37
38
39
40
from lm_eval.filters import build_filter_ensemble


@dataclass
class TaskConfig(dict):

41
42
    task: str = None
    group: str = None
43
    names: str = None
lintangsutawika's avatar
lintangsutawika committed
44
    reference: str = None
lintangsutawika's avatar
lintangsutawika committed
45
46
47
    task_name: str = (
        None  # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
    )
48
49
    dataset_path: str = None
    dataset_name: str = None
50
    dataset_kwargs: dict = None
51
52
53
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
54
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
55

56
    template_aliases: str = None
57
    aliases: Union[str, list] = None
58
59
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
60

61
62
    num_fewshot: int = 0
    batch_size: int = 1
63
64
    repeats: int = 1

65
66
67
68
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
69
    filter_list: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
70
71
72
    normalization: str = (
        None  # TODO: add length-normalization of various types, mutual info
    )
73
74
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
75
    use_prompt: str = None
76

lintangsutawika's avatar
lintangsutawika committed
77
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
78

79
80
81
82
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
83
84
85
        # if self.template_aliases is not None:
        #     if type(self.doc_to_text) == str:
        #         self.doc_to_text = self.template_aliases + self.doc_to_text
86

87
88
        #     if type(self.doc_to_target) == str:
        #         self.doc_to_target = self.template_aliases + self.doc_to_target
89

90
91
92
        # set "task_name" metadata field based on the "primary" name set
        if self.names:
            self.task_name = self.names[0]
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
109

110
111
112
113
114
115
116
117
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
153
        self._config = TaskConfig(**config) if config else TaskConfig()
154
155
156

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
157
158
159
            for name, components in self._config.get(
                "filters", [["none", ["take_first"]]]
            ):
160
161
162
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
163
164
165
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
192
193
194
195
196
197
198
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

236
237
238
239
240
241
242
243
244
245
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
246
            eval_logger.warning(
247
                "has_training_docs and has_validation_docs are False"
lintangsutawika's avatar
lintangsutawika committed
248
                "using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
249
            )
250
251
            return self.test_docs()

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

290
    def build_all_requests(self, limit=None, rank=None, world_size=None):
291
292
293
294
295
296
297
298
299
300
301
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
302
303
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
304
        ):
305
            # sample fewshot context #TODO: need to offset doc_id by rank now!
306
307
308
309
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
310
311
312
313
314
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
                metadata=(self._config["task_name"], doc_id, self._config.repeats),
            )
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
340
            The number of times each instance in a dataset is inferred on. Defaults to 1,
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
376
377
378
379
380
381
382
383
384
385
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
408
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
409
410

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
435
436
437
438
439
440

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
441
442
443
444
445
446
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
447
448
449
450
451


class ConfigurableTask(Task):

    VERSION = "2.0"
452
    OUTPUT_TYPE = None
453
    CONFIG = None
454
455
456
457

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
458
        # Get pre-configured attributes
459
        self._config = self.CONFIG
460

461
462
        # Use new configurations if there was no preconfiguration
        if self._config is None:
463
            self._config = TaskConfig(**config)
464
465
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
466
            if config is not None:
467
                self._config.__dict__.update(config)
468

469
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
470
471
472
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
473
474
475
476

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

477
478
479
480
481
482
483
484
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
485
            self._metric_kwargs = {}
486
487
488
            self._aggregation_list = {}
            self._higher_is_better = {}

lintangsutawika's avatar
lintangsutawika committed
489
            if self._config.output_type == "greedy_until":
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                for metric_config in self._config.metric_list:

                    metric_name = metric_config["metric"]
                    aggregation = metric_config["aggregation"]
                    higher_is_better = metric_config["higher_is_better"]
                    kwargs = {
                        key: metric_config[key]
                        for key in metric_config
                        if key not in ["metric", "aggregation", "higher_is_better"]
                    }

                    self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                        aggregation
                    ]

                    if metric_name in METRIC_REGISTRY.keys():
                        self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
                        self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                            metric_name
                        ]
                    else:
                        self._higher_is_better[metric_name] = higher_is_better
                        try:
                            metric_object = evaluate.load(metric_name)
                            self._metric_list[metric_name] = metric_object
                            self._metric_kwargs[metric_name] = kwargs

                        except Exception:
                            raise Warning(
                                "{} not found in the evaluate library!".format(
                                    metric_name
                                ),
                                "Please check https://huggingface.co/evaluate-metric",
                            )
lintangsutawika's avatar
lintangsutawika committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            else:
                eval_logger.warning(
                    f"Output Type set as {self._config.output_type} which does not use metric_list"
                    "metric list will be unused."
                )

                if self._config.output_type == "loglikelihood":
                    metric_list = ["perplexity", "acc"]
                elif self._config.output_type == "loglikelihood_rolling":
                    metric_list = [
                        "word_perplexity",
                        "byte_perplexity",
                        "bits_per_byte",
                    ]
                elif self._config.output_type == "multiple_choice":
                    metric_list = ["acc", "acc_norm"]

                for metric_name in metric_list:
                    self._aggregation_list[metric_name] = AGGREGATION_REGISTRY["mean"]
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
                    ]
546

547
        self.download(self._config.dataset_kwargs)
548
549
550
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
551
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
552
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
553
554
555
556
557
558
559
560
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
561
562
563
564
                        }
                        components.append([function["function"], kwargs])

                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
565
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
566
        else:
lintangsutawika's avatar
lintangsutawika committed
567
568
569
            self._filters = [
                build_filter_ensemble("take_first", [["take_first", None]])
            ]
570
571

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
572
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
573
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
574
575
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
576
577
578
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
579
580
581
582
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
            )  # TODO: pass the correct docs in here
583

584
585
586
587
588
589
590
591
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

622
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
623
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
lintangsutawika's avatar
lintangsutawika committed
624
            eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
625
                "num_fewshot > 0 but fewshot_split is None. "
lintangsutawika's avatar
lintangsutawika committed
626
                "using preconfigured rule."
lintangsutawika's avatar
lintangsutawika committed
627
            )
628
629
            return super().fewshot_docs()

lintangsutawika's avatar
lintangsutawika committed
630
        elif self._config.fewshot_split is not None:
631
632
            return self.dataset[self._config.fewshot_split]

633
634
635
636
637
638
639
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

640
641
642
643
644
645
646
647
648
649
650
651
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
652
653
654

        if self.prompt is not None:
            doc_to_text = self.prompt
655
656
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
657

658
659
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
660
        elif callable(doc_to_text):
661
662
663
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
664
        else:
665
            print(type(doc_to_text))
666
            raise TypeError
667
668

    def doc_to_target(self, doc):
669
670
671

        if self.prompt is not None:
            doc_to_target = self.prompt
672
673
674
        else:
            doc_to_target = self._config.doc_to_target

675
676
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
677
        elif callable(doc_to_target):
678
679
680
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
681
682
        else:
            raise TypeError
683
684
685

    def construct_requests(self, doc, ctx, **kwargs):

686
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
687
            arguments = (ctx, self.doc_to_target(doc))
688
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
689
            arguments = (self.doc_to_target(doc),)
690
        elif self.OUTPUT_TYPE == "multiple_choice":
691
692
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
693
694
695
696
697
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
698
            request_list = [
699
700
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
701
                    doc=doc,
702
                    arguments=(ctx, " {}".format(choice)),
703
                    idx=i,
704
705
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
706
                for i, choice in enumerate(choices)
707
            ]
708
709
710
711
712
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
713
                # here mutual info refers to calculating
714
715
716
717
718
719
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
720
                            doc=doc,
721
722
723
724
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
725
                        for i, choice in enumerate(choices)
726
727
728
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
729

730
        elif self.OUTPUT_TYPE == "greedy_until":
lintangsutawika's avatar
lintangsutawika committed
731
            arguments = (ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
732
733

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
734
735
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
736
737
738
739

    def process_results(self, doc, results):

        result_dict = {}
740
741
742
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
743
            result_dict = {"perplexity": ll, "acc": int(is_greedy)}
744
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
745
746
747
748
749
750
751
752
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
753
        elif self.OUTPUT_TYPE == "multiple_choice":
lintangsutawika's avatar
lintangsutawika committed
754
755
756
            lls = [
                res[0] for res in results
            ]  # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
757
            gold = int(self.doc_to_target(doc))
758
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
759
760
761
762
763
764
765
766
767
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
            if (
                2 * len(choices) == len(lls)
                and "acc_mutual_info" in self._metric_list.keys()
            ):
768
769
770
771
772
773
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
774
775

            acc = 1.0 if np.argmax(lls) == gold else 0.0
776
777
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
778
779
780
781

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
782
783
784
785
786
787
            }

            # TODO: set which normalization metrics should be reported, and calculate them

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
788
789
790
791
                is_greedy = [
                    res[1] for res in results
                ]  # take only the `is_greedy` results
                is_greedy = is_greedy[gold]  # take value for the gold answer
792
793
794
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
lintangsutawika's avatar
lintangsutawika committed
795
796
797
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
798
799
800
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

801
802
803
804
805
806
807
808
809
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
810
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
811
                )
812

lintangsutawika's avatar
lintangsutawika committed
813
                result_dict = {**result_dict, **_dict}
814
        else:
lintangsutawika's avatar
lintangsutawika committed
815
816
817
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'",
818
            )
819
820
821
822
823
824
825

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
826
        return self._higher_is_better
827
828
829
830
831
832
833
834
835
836


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
837
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
838
839
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
840
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
841
                doc=doc,
842
                arguments=(ctx, " {}".format(choice)),
843
                idx=i,
844
845
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
846
847
            for i, choice in enumerate(doc["choices"])
        ]
848
849

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
850
851
852
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
877
class PerplexityTask(Task):
878
879
880
881
882
883
884
885
886
887

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
888
    def fewshot_context(self, doc, num_fewshot, rnd=None):
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
917
918
919
920
921
922
923
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
924
925
926

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
927
928
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))