huggingface.py 47.5 KB
Newer Older
1
import copy
2
import os
3
4
5
6
from collections import defaultdict
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union

7
import torch
8
import torch.nn.functional as F
9
import transformers
10
11
12
13
14
from accelerate import Accelerator, DistributedType, find_executable_batch_size
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
15
16
17
18
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
19
20

from lm_eval import utils
baberabb's avatar
baberabb committed
21
from lm_eval.api.instance import Instance
22
23
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
24
from lm_eval.utils import stop_sequences_criteria
25

26

27
eval_logger = utils.eval_logger
28

lintangsutawika's avatar
lintangsutawika committed
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
53
54


55
@register_model("hf-auto", "hf", "huggingface")
56
class HFLM(LM):
57
58
59
60
61
62
63
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

64
    AUTO_MODEL_CLASS = None
65
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
66

67
68
    def __init__(
        self,
69
70
71
72
        pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
        backend: Optional[
            Literal["default", "causal", "seq2seq"]
        ] = "default",  # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
73
74
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
75
76
77
78
79
80
81
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
82
        truncation: Optional[bool] = False,
83
84
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
85
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
86
87
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
88
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
89
        use_fast_tokenizer: Optional[bool] = True,
90
        # arguments used for splitting a model across GPUs naively.
91
92
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
93
94
95
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
96
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
97
98
        # PEFT and quantization options
        peft: Optional[str] = None,
99
100
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
101
    ) -> None:
102
103
        super().__init__()

104
105
106
107
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
108
            )
109
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
110
111
112
113
114
115
116
117
118
119
            self._model = pretrained
            self._device = self._model.device

            self._config = self._model.config

            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
120
            else:
121
122
123
124
125
126
127
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
128
                )
129

130
        else:
131
132
133
134
135
136
137
138
139
140
141
142
143
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
            accelerator = Accelerator()

            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
                    + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
                    + ["mps", "mps:0"]
144
                )
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
                if device:
                    if device not in device_list:
                        device = int(device)
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
            else:
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
170
                self._device = torch.device(device)
171

172
173
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
174

175
            self._get_config(
176
177
178
179
180
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

181
182
183
184
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
                device_map_option=device_map_option,
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
                autogptq=autogptq,
                **kwargs,
201
202
            )

203
        # access self._model through self.model property outside this method
204
        self.model.eval()
205
        self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
206

207
        if (gpus >= 1 or str(self.device) == "mps") and isinstance(pretrained, str):
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            if not (parallelize or autogptq or ("device_map" in kwargs)):
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )

        self._create_tokenizer(
            pretrained,
            tokenizer,
222
            revision=revision,
223
            trust_remote_code=trust_remote_code,
224
            use_fast_tokenizer=use_fast_tokenizer,
225
226
        )

lintangsutawika's avatar
lintangsutawika committed
227
228
        self.truncation = truncation

229
        self.vocab_size = self.tokenizer.vocab_size
230
231
232
233
234
235
236
237
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
238
            if self.config.model_type == "qwen":
239
240
241
242
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
243

244
245
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
246
247
248
249
250
251
252
253
254
255
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
271
                else:
272
273
274
275
276
277
278
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
279
280
281
282
283
284
285
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
286
287
288
289
290
291
292
293
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
                    self._device = torch.device(
                        f"cuda:{accelerator.local_process_index}"
294
                    )
295
                    self.accelerator = accelerator
296

297
298
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
299

300
301
302
303
304
305
306
307
308
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
309

310
311
312
313
314
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

315
316
317
318
319
320
321
322
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

323
324
325
326
327
328
329
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
330
331
332
333
334
335
336
337
338
339
340
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
341

342
    @property
Ethan Smith's avatar
Ethan Smith committed
343
    def max_gen_toks(self) -> int:
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    def _get_backend(
        self,
        config: transformers.AutoConfig,
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        # PEFT and quantization options
        peft: Optional[str] = None,
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
                    device_map_option,
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
                )
            )
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

        if peft:
            if model_kwargs.get("load_in_4bit", None):
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
563
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
564
565
566
567
568
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
569
570
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
571
572
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
573

Benjamin Fattori's avatar
Benjamin Fattori committed
574
575
576
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
577
578
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
579
580
581
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
582
583
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
584
585
586
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
587
588
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
589
590
591
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
592
            for _ in range(5):
593
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
594
595
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
596
597
598
599
            return batch_size

        batch_size = forward_batch()

600
601
602
603
604
605
606
607
608
609
610
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
611
612
        return batch_size

baberabb's avatar
baberabb committed
613
614
615
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
616
        """ """
617
618
619
620
621
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
622
623

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
624

625
626
627
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
628

629
630
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
631
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
632
633
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
634
        padding_side: str = "left",
635
636
        left_truncate_len: int = None,
        truncation: bool = False,
baberabb's avatar
baberabb committed
637
    ) -> Tuple[List[int], List[int]]:
haileyschoelkopf's avatar
haileyschoelkopf committed
638
639
640
641
642
643
644
645
646
647
648
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
649
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
650
651
652
653
654
655
656
657
658
659
660
661
662
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

663
664
665
666
667
668
669
670
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
671
        :param inps: torch.Tensor
672
673
674
675
676
677
678
679
680
681
682
683
684
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
685
686
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
687
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
688
689
690
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
691
692
693
694
695
696
697
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
698
        if "do_sample" not in generation_kwargs:
699
700
701
702
703
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
704
        return self.model.generate(
705
            input_ids=context,
706
707
            max_length=max_length,
            stopping_criteria=stopping_criteria,
708
            pad_token_id=self.tokenizer.pad_token_id,
709
710
711
            use_cache=True,
            **generation_kwargs,
        )
712
713
714

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
715
716
717
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
718
719
720
721
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
722
723
724
725
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
726
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
727
728
            logits = logits[:contlen]

729
730
        return logits

baberabb's avatar
baberabb committed
731
732
733
    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
734
735
736
737
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
738
739
740
741
742
743

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
744
745
746
747
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

baberabb's avatar
baberabb committed
748
    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
749
750
751
752
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
753
754
755
                context_enc, continuation_enc = (
                    [self.eot_token_id],
                    self.tok_encode(continuation),
756
                )
757
            else:
758
                context_enc, continuation_enc = self._encode_pair(context, continuation)
759
760
761
762
763

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

baberabb's avatar
baberabb committed
764
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
765
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
766
767
768
769
770
771
772
773
774

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

775
776
777
778
779
780
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
781
                        prefix_token=self.eot_token_id,
782
783
784
785
786
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
787
788

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
804
805
806
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
807
808
809
810
811
812
813
814
815
816
817
818
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
819

820
821
822
823
824
825
826
827
828
829
830
831
832
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
833
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
834
835
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
836

Ethan Smith's avatar
Ethan Smith committed
837
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
838
839
840
841
842
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
858
859
860
861

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
862

863
864
        chunks = utils.chunks(
            re_ord.get_reordered(),
865
866
867
868
869
870
871
872
873
874
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=self._batch_scheduler
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
            else None,
875
876
        )

haileyschoelkopf's avatar
haileyschoelkopf committed
877
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
878
        for chunk in chunks:
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
898
                # how this all works (illustrated on a causal decoder-only setup):
899
900
901
902
903
904
905
906
907
908
909
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
910
911
                        device=self.device,
                    )
912
913
914
915
916
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
917
                        device=self.device,
918
                    )
919
                    (inplen,) = inp.shape
920
921
922
923

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

924
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
925
                        (continuation_enc)[-self.max_length :],
926
927
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
928
                        dtype=torch.long,
929
930
                        device=self.device,
                    )
931
932
                    (contlen,) = cont.shape

933
934
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
935
936
937
938
939
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
940

haileyschoelkopf's avatar
haileyschoelkopf committed
941
942
943
944
945
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
946
947
948
949

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
950

951
952
953
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
954
955
956
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
957
958
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
959
960
961
962
963
964
965
966
967
968
969
970
971
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
972
973
974

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
975
            )  # [batch, padding_length (inp or cont), vocab]
976
977
978
979
980
981

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
982
                # take only logits in the continuation
983
                # (discard context toks if decoder-only ; discard right-padding)
984
985
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
986
                ctx_len = (
987
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
988
989
990
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
991
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
992
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
993
994
995

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
996
997
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
998
                ).unsqueeze(0)  # [1, seq]
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
1012
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
1013
1014
1015
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1016

1017
1018
        return re_ord.get_original(res)

baberabb's avatar
baberabb committed
1019
    def generate_until(self, requests: List[Instance]) -> List[str]:
1020
1021
        res = defaultdict(list)
        re_ords = {}
1022
1023

        def _collate(x):
1024
1025
1026
1027
1028
1029
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
1030
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
1031
            return -len(toks), x[0]
1032

1033
1034
1035
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
1036
1037
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
1038
            # within each set of reqs for given kwargs, we reorder by token length, descending.
1039
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
1040

1041
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
1042
1043
1044
1045
1046
1047
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1048
        # for each different set of kwargs, we execute all requests, by batch.
1049
        for key, re_ord in re_ords.items():
1050
1051
            chunks = utils.chunks(
                re_ord.get_reordered(),
1052
1053
1054
1055
1056
1057
1058
1059
                n=self.batch_size
                if self.batch_size != "auto"
                else adaptive_batch_size
                if adaptive_batch_size is not None
                else 0,
                fn=self._batch_scheduler
                if self.batch_size == "auto" and not adaptive_batch_size
                else None,
1060
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1061
            for chunk in chunks:
1062
                contexts, all_gen_kwargs = zip(*chunk)
1063
1064
1065
1066
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
1067
1068
1069
1070
1071
1072
1073
1074
1075
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
1076
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
1077
1078
1079
                            )
                else:
                    raise ValueError(
1080
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
1081
1082
1083
1084
1085
1086
1087
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
1088

1089
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
1090
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
1091
1092
1093
1094
1095
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
1096

1097
                # encode, pad, and truncate contexts for this batch
1098
                context_enc, attn_masks = self.tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
1099
1100
1101
                    contexts,
                    left_truncate_len=max_ctx_len,
                    truncation=self.truncation,
1102
1103
1104
1105
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

1106
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
1107
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1108

1109
                # perform batched generation
1110
1111
1112
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
1113
                    stop=until,
1114
1115
                    **kwargs,
                )
1116

1117
1118
1119
1120
1121
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
1122

1123
                    s = self.tok_decode(cont_toks)
1124

1125
1126
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
1127
1128
1129
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
1130
                            s = s.split(term)[0]
1131

1132
                    res[key].append(s)
1133

1134
                    self.cache_hook.add_partial(
1135
                        "generate_until", (context, gen_kwargs), s
1136
1137
                    )
                    pbar.update(1)
1138
            # reorder this group of results back to original unsorted form
1139
            res[key] = re_ord.get_original(res[key])
1140

1141
        pbar.close()
1142

1143
        return grouper.get_original(res)