superglue.py 10.6 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

Jason Phang's avatar
Jason Phang committed
3
4
import numpy as np
from tqdm import auto as tqdm_lib
5
from . common import HFTask, simple_accuracy_metric, yesno
thefazzer's avatar
thefazzer committed
6
from lm_eval.base import rf, mean, f1_score, acc_all
Jason Phang's avatar
Jason Phang committed
7

8
class BoolQ(HFTask):
Leo Gao's avatar
Leo Gao committed
9
10
    DATASET_PATH = "super_glue"
    DATASET_NAME = "boolq"
Jason Phang's avatar
Jason Phang committed
11
12
13
14
15
16
17
18
19
20
21

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
22
        # TODO: figure out actual description
Jason Phang's avatar
Jason Phang committed
23
24
        return "Read the following passages and answer each question with a yes or a no."

Leo Gao's avatar
Update  
Leo Gao committed
25
26
27
28
29
    def doc_to_text(self, doc):
        return f"{doc['passage']}\nquestion: {doc['question']}\nanswer: "
    
    def doc_to_target(self, doc):
        return yesno(doc['label']) 
Jason Phang's avatar
Jason Phang committed
30

31
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Update  
Leo Gao committed
32

33
34
        ll_yes, _ = rf.loglikelihood(ctx, ' yes')
        ll_no , _ = rf.loglikelihood(ctx, ' no')
Leo Gao's avatar
Update  
Leo Gao committed
35
36
37
38
39
40
41
42
43

        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]

        acc = 1. if (ll_yes > ll_no) == gold else 0.

44
45
46
47
48
49
50
51
52
53
54
55
56
        return {
            "acc": acc
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
57

58
class CommitmentBank(HFTask):
Leo Gao's avatar
Leo Gao committed
59
60
    DATASET_PATH = "super_glue"
    DATASET_NAME = "cb"
Jason Phang's avatar
Jason Phang committed
61
62
63
64
65
66
67
68
69
70

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

thefazzer's avatar
thefazzer committed
71
72
73
    def fewshot_description(self):
        return "Given a premise and a hypothesis, classify whether the author of the premise is committed to the truth of the hypothesis. The three possible labels are true, false or neither."

74
75
    def doc_to_text(self, doc):
        return "{}\nquestion:\t{}\ttrue, false or neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
76
77
78
            doc["premise"],
            doc["hypothesis"],
        )
79

thefazzer's avatar
thefazzer committed
80
    def doc_to_target(self, doc):
81
82
83
84
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "true", 1: "neither", 2: "false"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
85

thefazzer's avatar
thefazzer committed
86
87
88
89
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, ' true')
        ll_neither, _ = rf.loglikelihood(ctx, ' neither')
        ll_false, _ = rf.loglikelihood(ctx, ' false')
90

thefazzer's avatar
thefazzer committed
91
92
93
94
        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        gold = doc["label"]
thefazzer's avatar
thefazzer committed
95
96
        pred = np.argmax(results)
        acc = 1. if pred == gold else 0.
Jason Phang's avatar
Jason Phang committed
97

thefazzer's avatar
thefazzer committed
98
        return {
thefazzer's avatar
thefazzer committed
99
100
            "acc": acc,
            "f1": (pred, gold)
thefazzer's avatar
thefazzer committed
101
102
103
104
105
106
107
108
109
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
thefazzer's avatar
thefazzer committed
110
111
            "acc": mean,
            "f1": f1_score
thefazzer's avatar
thefazzer committed
112
        }
Jason Phang's avatar
Jason Phang committed
113

114
class Copa(HFTask):
Leo Gao's avatar
Leo Gao committed
115
116
    DATASET_PATH = "super_glue"
    DATASET_NAME = "copa"
Jason Phang's avatar
Jason Phang committed
117
118
119
120
121
122
123
124
125
126

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

thefazzer's avatar
thefazzer committed
127
    def fewshot_description(self):
thefazzer's avatar
thefazzer committed
128
        return "Given a premise and one alternative with a causal relation to the premise and another without, choose the more plausible alternative"
thefazzer's avatar
thefazzer committed
129

130
    def doc_to_text(self, doc):
Jason Phang's avatar
Jason Phang committed
131
        # Drop the period
Jason Phang's avatar
Jason Phang committed
132
133
134
135
        connector = {
            "cause": "because",
            "effect": "therefore",
        }[doc["question"]]
136
        return doc["premise"].strip()[:-1] + f" {connector} "
Jason Phang's avatar
Jason Phang committed
137

thefazzer's avatar
thefazzer committed
138
    def doc_to_target(self, doc):
139
140
141
        correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]
        # Connect the sentences
        return self.convert_choice(correct_choice)
thefazzer's avatar
thefazzer committed
142
143

    def construct_requests(self, doc, ctx):
thefazzer's avatar
thefazzer committed
144
145
        choice1 = " " + self.convert_choice(doc["choice1"])
        choice2 = " " + self.convert_choice(doc["choice2"])
thefazzer's avatar
thefazzer committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        
        ll_choice1, _ = rf.loglikelihood(ctx, choice1)
        ll_choice2, _ = rf.loglikelihood(ctx, choice2)

        return ll_choice1, ll_choice2

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        acc = 1. if pred == gold else 0.

        return {
            "acc": acc
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
170
171
172
173
174
175

    @staticmethod
    def convert_choice(choice):
        return choice[0].lower() + choice[1:]


176
class MultiRC(HFTask):
Leo Gao's avatar
Leo Gao committed
177
178
    DATASET_PATH = "super_glue"
    DATASET_NAME = "multirc"
Jason Phang's avatar
multirc  
Jason Phang committed
179
180
181
182
183
184
185
186
187
188
189
190
191

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "READING COMPREHENSION ANSWER KEY"

192
193
194
195
196
    def doc_to_text(self, doc):
        return f"{doc['paragraph']}\n\n{doc['question']}\n"

    def doc_to_target(self, doc):
        return self.format_answer(answer=doc["answer"], label=doc["label"])
Jason Phang's avatar
multirc  
Jason Phang committed
197
198
199
200
201
202

    @staticmethod
    def format_answer(answer, label):
        label_str = "True" if label else "False"
        return f"[{label_str}] {answer}"

thefazzer's avatar
thefazzer committed
203
204
205
206
207
208
209
210
211
212
213
214
215
    def construct_requests(self, doc, ctx):
        true_choice = self.format_answer(answer=doc["answer"], label=True)
        false_choice = self.format_answer(answer=doc["answer"], label=False)
        
        ll_true_choice, _ = rf.loglikelihood(ctx, f' {true_choice}')
        ll_false_choice, _ = rf.loglikelihood(ctx, f' {false_choice}')

        return ll_true_choice, ll_false_choice

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        acc = 1. if pred == gold else 0.
216

Jason Phang's avatar
multirc  
Jason Phang committed
217
        return {
thefazzer's avatar
thefazzer committed
218
219
220
221
222
223
224
225
226
227
228
            "acc": (pred, doc)
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": acc_all
Jason Phang's avatar
multirc  
Jason Phang committed
229
230
        }

231
class WordsInContext(HFTask):
Leo Gao's avatar
Leo Gao committed
232
233
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wic"
Jason Phang's avatar
Jason Phang committed
234
235
236
237
238
239
240
241
242
243

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

244
245
    def doc_to_text(self, doc):
        return "{}\n{}\nquestion\tIs the word '{}' used in the same way in the" \
Jason Phang's avatar
Jason Phang committed
246
247
248
249
250
               " two sentences above?\nanswer:".format(
                    doc["sentence1"],
                    doc["sentence2"],
                    doc["sentence1"][doc["start1"]:doc["end1"]],
                )
251
252
253

    def doc_to_target(self, doc):
        return " {}".format({0: "no", 1: "yes"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
254
255

    def evaluate(self, docs, lm, provide_description, num_fewshot):
256
257
258
259
260
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
261
262
263
264
265
266
267
268
269
270
271
272
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return simple_accuracy_metric(preds=preds, golds=golds)


273
class SGWinogradSchemaChallenge(HFTask):
Leo Gao's avatar
Leo Gao committed
274
275
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wsc"
Jason Phang's avatar
Jason Phang committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                # GPT-3 Paper's format only uses positive examples
                self._training_docs = [
                    doc for doc in
                    self._load_nlp_dataset()["train"]
                    if doc["label"]
                ]
            return self._training_docs

    def fewshot_description(self):
        return "Final Exam with Answer Key\n" \
           "Instructions: Please carefully read the following passages. " \
           "For each passage, you must identify which noun the pronoun marked in *bold*" \
           " refers to.\n====="

303
    def doc_to_text(self, doc):
Jason Phang's avatar
Jason Phang committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        raw_passage = doc["text"]
        passage = (
            raw_passage[:doc["span2_index"]]
            + "*{}*".format(doc["span2_text"])
            + raw_passage[doc["span2_index"] + len(doc["span2_text"]):]
        )
        pronoun = doc["span2_text"]
        text = (
            f"Passage: {passage}\n"
            + f"Question: In the passage above, what does the pronoun \"*{pronoun}*\" refer to?\n"
            + "Answer:"
        )
        return text

318
319
320
    def doc_to_target(self, doc):
        return " {}".format(doc["span1_text"])

Jason Phang's avatar
Jason Phang committed
321
    def evaluate(self, docs, lm, provide_description, num_fewshot):
322
323
324
325
326
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            to_predict = " " + doc["span1_text"]
            num_tokens = len(lm.tokenizer.tokenize(to_predict))
            generated = lm.generate(
                context=ctx,
                max_gen_length=num_tokens,
            )
            preds.append(1 if generated == to_predict else 0)
        return simple_accuracy_metric(preds=preds, golds=golds)
Anish Thite's avatar
Anish Thite committed
343
344
345
346
347
348
349
350
351

class RTE(HFTask):
    DATASET_PATH = "super_glue"
    DATASET_NAME = "rte"

    def fewshot_description(self):
        #TODO: implement
        pass

352
353
354
355
356
357
    def doc_to_text(self, doc):
        return ''.join([doc['premise'], '\nquestion: ',doc['hypothesis'], ' True or False?\nanswer: '])

    def doc_to_target(self, doc):
        return 'True' if doc['label'] == 0 else 'False'

358
359
360
361
362
    # TODO: Implement evaluation code

    # ***IMPORTANT***: this evaluation function needs to be written for the new framework. 
    # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
    # Remove this comment when the evaluation code is implemented.
Anish Thite's avatar
Anish Thite committed
363