superglue.py 12 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

Jason Phang's avatar
Jason Phang committed
3
4
import numpy as np
from tqdm import auto as tqdm_lib
thefazzer's avatar
thefazzer committed
5
from . common import HFTask, simple_accuracy_metric, yesno, trueneitherfalse, truefalse
thefazzer's avatar
thefazzer committed
6
from lm_eval.base import rf, mean, f1_score
Jason Phang's avatar
Jason Phang committed
7

8
class BoolQ(HFTask):
Leo Gao's avatar
Leo Gao committed
9
10
    DATASET_PATH = "super_glue"
    DATASET_NAME = "boolq"
Jason Phang's avatar
Jason Phang committed
11
12
13
14
15
16
17
18
19
20
21

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
22
        # TODO: figure out actual description
Jason Phang's avatar
Jason Phang committed
23
24
        return "Read the following passages and answer each question with a yes or a no."

Leo Gao's avatar
Update  
Leo Gao committed
25
26
27
28
29
    def doc_to_text(self, doc):
        return f"{doc['passage']}\nquestion: {doc['question']}\nanswer: "
    
    def doc_to_target(self, doc):
        return yesno(doc['label']) 
Jason Phang's avatar
Jason Phang committed
30

31
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Update  
Leo Gao committed
32

33
34
        ll_yes, _ = rf.loglikelihood(ctx, ' yes')
        ll_no , _ = rf.loglikelihood(ctx, ' no')
Leo Gao's avatar
Update  
Leo Gao committed
35
36
37
38
39
40
41
42
43

        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]

        acc = 1. if (ll_yes > ll_no) == gold else 0.

44
45
46
47
48
49
50
51
52
53
54
55
56
        return {
            "acc": acc
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
57
58


59
class CommitmentBank(HFTask):
Leo Gao's avatar
Leo Gao committed
60
61
    DATASET_PATH = "super_glue"
    DATASET_NAME = "cb"
Jason Phang's avatar
Jason Phang committed
62
63
64
65
66
67
68
69
70
71

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

thefazzer's avatar
thefazzer committed
72
73
74
    def fewshot_description(self):
        return "Given a premise and a hypothesis, classify whether the author of the premise is committed to the truth of the hypothesis. The three possible labels are true, false or neither."

Jason Phang's avatar
Jason Phang committed
75
76
77
78
79
80
81
82
83
84
85
    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\ttrue, false or neither?\nanswer:".format(
            doc["premise"],
            doc["hypothesis"],
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "true", 1: "neither", 2: "false"}[doc["label"]])
        return text
thefazzer's avatar
thefazzer committed
86
87
88
    
    def doc_to_target(self, doc):
        return trueneitherfalse(doc['label']) 
Jason Phang's avatar
Jason Phang committed
89

thefazzer's avatar
thefazzer committed
90
91
92
93
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, ' true')
        ll_neither, _ = rf.loglikelihood(ctx, ' neither')
        ll_false, _ = rf.loglikelihood(ctx, ' false')
94

thefazzer's avatar
thefazzer committed
95
96
97
98
        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        gold = doc["label"]
thefazzer's avatar
thefazzer committed
99
100
        pred = np.argmax(results)
        acc = 1. if pred == gold else 0.
Jason Phang's avatar
Jason Phang committed
101

thefazzer's avatar
thefazzer committed
102
        return {
thefazzer's avatar
thefazzer committed
103
104
            "acc": acc,
            "f1": (pred, gold)
thefazzer's avatar
thefazzer committed
105
106
107
108
109
110
111
112
113
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
thefazzer's avatar
thefazzer committed
114
115
            "acc": mean,
            "f1": f1_score
thefazzer's avatar
thefazzer committed
116
        }
Jason Phang's avatar
Jason Phang committed
117

118
class Copa(HFTask):
Leo Gao's avatar
Leo Gao committed
119
120
    DATASET_PATH = "super_glue"
    DATASET_NAME = "copa"
Jason Phang's avatar
Jason Phang committed
121
122
123
124
125
126
127
128
129
130

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

thefazzer's avatar
thefazzer committed
131
132
133
    def fewshot_description(self):
        return "Given a premise and two alternatives, one of which has a causal relation to the premise and the other does not, choose the more plausible alternative"

Jason Phang's avatar
Jason Phang committed
134
135
    def doc_to_text(self, doc, include_target=True):
        # Drop the period
Jason Phang's avatar
Jason Phang committed
136
137
138
139
140
        connector = {
            "cause": "because",
            "effect": "therefore",
        }[doc["question"]]
        text = doc["premise"].strip()[:-1] + f" {connector} "
Jason Phang's avatar
Jason Phang committed
141
142
143
144
145
146
        if include_target:
            correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]
            # Connect the sentences
            text += self.convert_choice(correct_choice)
        return text

thefazzer's avatar
thefazzer committed
147
148
149
150
    def doc_to_target(self, doc):
        return truefalse(doc['label']) 

    def construct_requests(self, doc, ctx):
Jason Phang's avatar
Jason Phang committed
151
152
            choice1 = " " + self.convert_choice(doc["choice1"])
            choice2 = " " + self.convert_choice(doc["choice2"])
thefazzer's avatar
thefazzer committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        
        ll_choice1, _ = rf.loglikelihood(ctx, choice1)
        ll_choice2, _ = rf.loglikelihood(ctx, choice2)

        return ll_choice1, ll_choice2

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        acc = 1. if pred == gold else 0.

        return {
            "acc": acc
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
177
178
179
180
181
182

    @staticmethod
    def convert_choice(choice):
        return choice[0].lower() + choice[1:]


183
class MultiRC(HFTask):
Leo Gao's avatar
Leo Gao committed
184
185
    DATASET_PATH = "super_glue"
    DATASET_NAME = "multirc"
Jason Phang's avatar
multirc  
Jason Phang committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "READING COMPREHENSION ANSWER KEY"

    def doc_to_text(self, doc, include_target=True):
        return f"{doc['paragraph']}\n\n{doc['question']}\n" \
            + (self.format_answer(answer=doc["answer"], label=doc["label"])
               if include_target else "")

    @staticmethod
    def format_answer(answer, label):
        label_str = "True" if label else "False"
        return f"[{label_str}] {answer}"

    def evaluate(self, docs, lm, provide_description, num_fewshot):
210
211
212
213
214
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
multirc  
Jason Phang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        preds = []
        for doc in docs:
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            true_choice = self.format_answer(answer=doc["answer"], label=True)
            false_choice = self.format_answer(answer=doc["answer"], label=False)
            preds.append(
                lm.loglikelihood(ctx, f' {true_choice}')
                > lm.loglikelihood(ctx, f' {false_choice}')
            )

        # Only count as correct if all answers are labeled correctly for each question
        question_scoring_dict = {}
        for doc, pred in zip(docs, preds):
            question_id = doc["idx"]["question"]
            if question_id not in question_scoring_dict:
                question_scoring_dict[question_id] = []
            gold_label = doc["label"] == 1
            question_scoring_dict[question_id].append(gold_label == pred)
        acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
        return {
            "major": acc,
            "minor": {"acc": acc},
            "higher_is_better": True,
        }


245
class WordsInContext(HFTask):
Leo Gao's avatar
Leo Gao committed
246
247
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wic"
Jason Phang's avatar
Jason Phang committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\n{}\nquestion\tIs the word '{}' used in the same way in the" \
               " two sentences above?\nanswer:".format(
                    doc["sentence1"],
                    doc["sentence2"],
                    doc["sentence1"][doc["start1"]:doc["end1"]],
                )
        if include_target:
            text += " {}".format({0: "no", 1: "yes"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
270
271
272
273
274
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
275
276
277
278
279
280
281
282
283
284
285
286
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return simple_accuracy_metric(preds=preds, golds=golds)


287
class SGWinogradSchemaChallenge(HFTask):
Leo Gao's avatar
Leo Gao committed
288
289
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wsc"
Jason Phang's avatar
Jason Phang committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                # GPT-3 Paper's format only uses positive examples
                self._training_docs = [
                    doc for doc in
                    self._load_nlp_dataset()["train"]
                    if doc["label"]
                ]
            return self._training_docs

    def fewshot_description(self):
        return "Final Exam with Answer Key\n" \
           "Instructions: Please carefully read the following passages. " \
           "For each passage, you must identify which noun the pronoun marked in *bold*" \
           " refers to.\n====="

    def doc_to_text(self, doc, include_target=True):
        raw_passage = doc["text"]
        passage = (
            raw_passage[:doc["span2_index"]]
            + "*{}*".format(doc["span2_text"])
            + raw_passage[doc["span2_index"] + len(doc["span2_text"]):]
        )
        pronoun = doc["span2_text"]
        text = (
            f"Passage: {passage}\n"
            + f"Question: In the passage above, what does the pronoun \"*{pronoun}*\" refer to?\n"
            + "Answer:"
        )
        if include_target:
            text += " {}".format(doc["span1_text"])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
335
336
337
338
339
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            to_predict = " " + doc["span1_text"]
            num_tokens = len(lm.tokenizer.tokenize(to_predict))
            generated = lm.generate(
                context=ctx,
                max_gen_length=num_tokens,
            )
            preds.append(1 if generated == to_predict else 0)
        return simple_accuracy_metric(preds=preds, golds=golds)
Anish Thite's avatar
Anish Thite committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

class RTE(HFTask):
    DATASET_PATH = "super_glue"
    DATASET_NAME = "rte"

    def fewshot_description(self):
        #TODO: implement
        pass

    def doc_to_text(self, doc, include_target=True):
        if include_target:
            if doc['label'] == 0:
                answer = 'True'
            else:
                answer = 'False'
            return ''.join([doc['premise'], '\nquestion: ',doc['hypothesis'], ' True or False?\nanswer: ', answer])
        else:
            return ''.join([doc['premise'], '\nquestion: ',doc['hypothesis'], ' True or False?\nanswer: '])
374
375
376
377
378
379
    
    # TODO: Implement evaluation code

    # ***IMPORTANT***: this evaluation function needs to be written for the new framework. 
    # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
    # Remove this comment when the evaluation code is implemented.
Anish Thite's avatar
Anish Thite committed
380