task.py 14.2 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber's avatar
Baber committed
3
import logging
Baber's avatar
Baber committed
4
from collections.abc import Iterable
Baber's avatar
Baber committed
5
from dataclasses import asdict, dataclass, field
Baber's avatar
Baber committed
6
from typing import TYPE_CHECKING, Callable
Baber's avatar
Baber committed
7

8
from lm_eval.api.filter import FilterEnsemble
Baber's avatar
Baber committed
9
10
11
12
13
14
15
from lm_eval.api.instance import OutputType
from lm_eval.config.metric import MetricConfig
from lm_eval.config.utils import maybe_serialize


if TYPE_CHECKING:
    from lm_eval.api.samplers import ContextSampler
16
    from lm_eval.api.task import Task
Baber's avatar
Baber committed
17
18
19
20
21
22
23
24
25

eval_logger = logging.getLogger(__name__)


@dataclass
class RepeatConfig:
    """Encapsulates information about a single repeat."""

    repeats: int = 1
Baber's avatar
Baber committed
26
27
    metric_fn: str | Callable = "pass@N"
    kwargs: dict | None = field(default_factory=dict)
Baber's avatar
Baber committed
28
29
30
31
32
33
34


@dataclass
class FilterConfig:
    """Encapsulates information about a single filter."""

    name: str
35
36
    ensemble: FilterEnsemble
    metric_list: list[MetricConfig]
Baber's avatar
Baber committed
37
38
39
40


@dataclass
class FewshotConfig:
41
42
43
    # hack: this returns task.config.num_fewshot
    # to keep in sync as it is runtime-modified
    num_fewshot: Callable[[], int]
Baber's avatar
Baber committed
44
45
46
47
48
    split: str | None = None
    sampler: str | Callable = "default"
    samples: Callable[[], list[dict]] | list[dict] | None = None
    process_docs: Callable[[list[dict]], Iterable[dict]] | None = None
    fewshot_indices: list[int] | None = None
Baber's avatar
Baber committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    rnd: int = field(init=False, default=False)

    def __post_init__(self) -> None:
        if self.samples is not None and not (
            isinstance(self.samples, list) or callable(self.samples)
        ):
            raise TypeError(
                "samples must be either list[dict] or callable returning list[dict]"
            )

        if self.split is not None and self.samples is not None:
            eval_logger.warning(
                "Both split and samples are configured; split will take precedence"
            )

    @property
    def has_source(self) -> bool:
        """Check if any fewshot source is configured."""
        return self.split is not None or self.samples is not None

    def _get_raw_docs(
        self, dataset
Baber's avatar
Baber committed
71
    ) -> list[dict] | Callable[[], Iterable[dict]] | None:
Baber's avatar
Baber committed
72
73
74
75
76
        """Get raw documents from configured source."""
        if self.split is not None:
            return dataset[self.split]

        if self.samples is not None:
Baber's avatar
Baber committed
77
            if isinstance(self.samples, list) or callable(self.samples):
Baber's avatar
Baber committed
78
79
80
81
82
83
                return self.samples
            else:
                raise TypeError(
                    "samples must be either a list of dicts or a callable returning a list"
                )

Baber's avatar
Baber committed
84
    def get_docs(self, dataset) -> Iterable[dict] | None:
Baber's avatar
Baber committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        """Get processed documents from configured source."""
        raw_docs = self._get_raw_docs(dataset)
        if raw_docs is None:
            return None

        if self.process_docs is not None:
            return self.process_docs(raw_docs)
        return raw_docs

    @property
    def get_sampler(self):
        from lm_eval.api import samplers

        if isinstance(self.sampler, str):
            return samplers.get_sampler(self.sampler)
        elif callable(self.sampler):
            return self.sampler

    def init_sampler(
Baber's avatar
Baber committed
104
105
        self, docs: list[dict], task: Task, rnd=None, fewshot_indices=None
    ) -> ContextSampler:
Baber's avatar
Baber committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        """Initialize the sampler with the given documents and task."""
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd` of FewShotSampler!"
            )
        return self.get_sampler(
            docs,
            task,
            rnd=rnd,
            fewshot_indices=fewshot_indices
            if fewshot_indices
            else self.fewshot_indices,
        )


@dataclass
class TaskConfig(dict):
    # task naming/registry
Baber's avatar
Baber committed
124
125
126
    task: str | None = None
    task_alias: str | None = None
    tag: str | list | None = None
Baber's avatar
Baber committed
127
128
129
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber's avatar
Baber committed
130
131
132
133
134
135
136
137
    custom_dataset: Callable | None = None
    dataset_path: str | None = None
    dataset_name: str | None = None
    dataset_kwargs: dict | None = field(default_factory=dict)
    training_split: str | None = None
    validation_split: str | None = None
    test_split: str | None = None
    fewshot_split: str | None = (
Baber's avatar
Baber committed
138
139
140
141
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
    )
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
Baber's avatar
Baber committed
142
143
144
145
146
    process_docs: Callable | None = None
    doc_to_text: Callable | str | None = None
    doc_to_target: Callable | str | None = None
    doc_to_image: Callable | str | None = None
    doc_to_audio: Callable | str | None = None
Baber's avatar
Baber committed
147
    unsafe_code: bool = False
Baber's avatar
Baber committed
148
149
150
    doc_to_choice: Callable | str | dict | list | None = None
    process_results: Callable | str | None = None
    use_prompt: str | None = None
Baber's avatar
Baber committed
151
152
153
    description: str = ""
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
Baber's avatar
Baber committed
154
    fewshot_config: dict | None = None
Baber's avatar
Baber committed
155
    # runtime configuration options
Baber's avatar
Baber committed
156
157
    num_fewshot: int | None = 0
    generation_kwargs: dict | None = None
Baber's avatar
Baber committed
158
    # scoring options
Baber's avatar
Baber committed
159
    metric_list: list | None = None
Baber's avatar
Baber committed
160
161
    output_type: OutputType = "generate_until"
    repeats: int = 1
Baber's avatar
Baber committed
162
    filter_list: list[dict] | None = None
Baber's avatar
Baber committed
163
    should_decontaminate: bool = False
Baber's avatar
Baber committed
164
165
166
    doc_to_decontamination_query: str | None = None
    gen_prefix: str | None = None
    metadata: dict | None = field(
Baber's avatar
nit  
Baber committed
167
168
169
        default_factory=dict
    )  # by default, not used in the code. allows for users to pass arbitrary info to tasks

170
    _metric_list: list[MetricConfig] = field(default_factory=list)
Baber's avatar
Baber committed
171
    _filter_list: list[FilterConfig] = field(default_factory=list)
172
    # ds_cfg: DatasetConfig = field(init=False)
Baber's avatar
nit  
Baber committed
173
    fewshot_cfg: FewshotConfig = field(init=False)
Baber's avatar
Baber committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

    def __post_init__(self) -> None:
        ### ---setup generation kwargs--- ###
        if self.generation_kwargs is not None:
            if self.output_type != "generate_until":
                eval_logger.warning(
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
        else:
            if self.output_type == "generate_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
                    "do_sample": False,
                    "temperature": 0,
                }
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
        # ---setup fewshot config--- #
        _fewshot_cfg = self.fewshot_config if self.fewshot_config is not None else {}
        self.fewshot_cfg = FewshotConfig(
Baber's avatar
Baber committed
211
            num_fewshot=lambda: self.num_fewshot or _fewshot_cfg.get("num_fewshot", 0),
Baber's avatar
Baber committed
212
213
214
215
216
217
218
            split=self.fewshot_split,
            sampler=_fewshot_cfg.get("sampler", "default"),
            samples=_fewshot_cfg.get("samples", None),
            process_docs=_fewshot_cfg.get("process_docs", None),
            fewshot_indices=_fewshot_cfg.get("fewshot_indices", None),
        )

Baber's avatar
Baber committed
219
    def _get_metric(self, metric_list: list[dict] | None = None) -> list[MetricConfig]:
Baber's avatar
nit  
Baber committed
220
221
222
223
224
225
226
227
228
        from lm_eval.api.registry import (
            AGGREGATION_REGISTRY,
            DEFAULT_METRIC_REGISTRY,
            get_aggregation,
            get_metric,
            get_metric_aggregation,
            is_higher_better,
        )

Baber's avatar
Baber committed
229
        # if metric_list defined inside a filter, use that; otherwise use the task's metric_list
230
        metric_list = metric_list or self.metric_list
Baber's avatar
Baber committed
231
        metrics = []
232
        if not metric_list:
Baber's avatar
Baber committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            # ---------- 1. If no metrics defined, use defaults for output type ----------
            _metric_list = DEFAULT_METRIC_REGISTRY[self.output_type]
            eval_logger.info(
                f"No metrics defined in config, using default metrics for {self.output_type}={_metric_list}"
            )
            metrics.extend(
                MetricConfig(
                    name=metric_name,
                    fn=get_metric(metric_name),
                    aggregation_fn=get_metric_aggregation(metric_name),
                    higher_is_better=is_higher_better(metric_name),
                )
                for metric_name in _metric_list
            )
        else:
Baber's avatar
nit  
Baber committed
248
            # ---------- 2. Process user-defined metrics from config ----------
249
            for metric_config in metric_list:
Baber's avatar
Baber committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
                metric_name = metric_config["metric"]
                _metric_fn_kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
                }
                _hf_evaluate_metric: bool = metric_config.get("hf_evaluate", False)
                _metric_fn = None
                _aggregation = None

                if self.process_results is not None:
                    # User will compute metrics inside `process_results()`
                    _metric_name = None
                    _metric_fn_kwargs = {}
                elif callable(metric_name):
                    # User passed a function object
                    _metric_name = metric_name.__name__
                    _metric_fn = metric_name.__call__
                else:
                    # Normal: look up by name
Baber's avatar
Baber committed
271
272
                    _metric_name = metric_name
                    _metric_fn = get_metric(metric_name, _hf_evaluate_metric)
Baber's avatar
Baber committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

                # ---------- 3. Decide how to aggregate examples ----------
                if "aggregation" in metric_config:
                    if isinstance(_agg_name := metric_config["aggregation"], str):
                        _aggregation = get_aggregation(_agg_name)
                    elif callable(_agg_name):  # noqa: E721
                        _aggregation = metric_config["aggregation"]
                else:
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    _aggregation = get_metric_aggregation(metric_name)
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[_aggregation]}"
                    )

                # ---------- 4. Determine “higher-is-better” semantics ----------
                if "higher_is_better" in metric_config:
                    _higher_is_better = metric_config["higher_is_better"]
                else:
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={is_higher_better(metric_name)}"
                    )
                    _higher_is_better = is_higher_better(metric_name)

                metrics.append(
                    MetricConfig(
                        name=_metric_name,
                        fn=_metric_fn,
                        kwargs=_metric_fn_kwargs,
                        aggregation_fn=_aggregation,
                        higher_is_better=_higher_is_better,
                        hf_evaluate=_hf_evaluate_metric,
                    )
                )
310
311
        for m in metrics:
            if m not in self._metric_list:
Baber's avatar
fixup  
Baber committed
312
                self._metric_list.append(m)
Baber's avatar
Baber committed
313
314
315
        return metrics

    @property
Baber's avatar
Baber committed
316
    def get_filters(self) -> list[FilterConfig]:
Baber's avatar
nit  
Baber committed
317
318
        from lm_eval.filters import build_filter_ensemble

Baber's avatar
Baber committed
319
320
321
322
        if not self.filter_list:
            eval_logger.debug(
                "No custom filters defined; falling back to 'take_first' for handling repeats."
            )
323
324
325
326
            return [
                FilterConfig(
                    name="none",
                    ensemble=build_filter_ensemble("none", [("take_first", None)]),
Baber's avatar
fixup  
Baber committed
327
                    metric_list=self._get_metric(metric_list=None),
328
329
                )
            ]
Baber's avatar
Baber committed
330
331
        else:

332
            def _strip_fn(d: dict) -> tuple[str, dict]:
333
334
335
                return d["function"], {
                    k: v for k, v in d.items() if k not in ["function", "metric_list"]
                }
Baber's avatar
Baber committed
336
337
338
339
340
341

            configs = (
                self.filter_list.values()
                if isinstance(self.filter_list, dict)
                else self.filter_list
            )
342
343
344
345
346
347
348
            x = [
                FilterConfig(
                    name=cfg["name"],
                    ensemble=build_filter_ensemble(
                        filter_name=cfg["name"],
                        components=[_strip_fn(f) for f in cfg["filter"]],
                    ),
Baber's avatar
fixup  
Baber committed
349
                    metric_list=self._get_metric(metric_list=cfg.get("metric_list")),
Baber's avatar
Baber committed
350
351
352
                )
                for cfg in configs
            ]
353
            return x
Baber's avatar
Baber committed
354

355
    @classmethod
Baber's avatar
Baber committed
356
    def from_yaml(cls, data: dict) -> TaskConfig:
357
358
359
        """Create a TaskConfig instance from a YAML-like dictionary."""
        return cls(**data)

Baber's avatar
Baber committed
360
361
362
363
364
365
366
    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
Baber's avatar
Baber committed
367
368
369
370
371
372
373
374
        def _ser(x):
            if isinstance(x, dict):
                return {k: _ser(v) for k, v in x.items()}
            if isinstance(x, (list, tuple, set)):
                return type(x)(_ser(i) for i in x)
            return maybe_serialize(x, keep_callable)

        return {k: _ser(v) for k, v in asdict(self).items() if v is not None}