task.py 13.8 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import logging
from dataclasses import asdict, dataclass, field
from typing import TYPE_CHECKING, Callable, Iterable, Optional, Union

from lm_eval.api.filter import FilterEnsemble
from lm_eval.api.instance import OutputType
from lm_eval.config.metric import MetricConfig
from lm_eval.config.utils import maybe_serialize


if TYPE_CHECKING:
    from lm_eval.api.samplers import ContextSampler
    from lm_eval.api.task import Task, eval_logger

eval_logger = logging.getLogger(__name__)


@dataclass
class RepeatConfig:
    """Encapsulates information about a single repeat."""

    repeats: int = 1
    metric_fn: Union[str, Callable] = "pass@N"
Baber's avatar
Baber committed
24
    kwargs: Optional[dict] = field(default_factory=dict)
Baber's avatar
Baber committed
25
26
27
28
29
30
31
32


@dataclass
class FilterConfig:
    """Encapsulates information about a single filter."""

    name: str
    fn: Optional[Callable] = None
Baber's avatar
Baber committed
33
    kwargs: Optional[dict] = field(default_factory=dict)
Baber's avatar
Baber committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125


@dataclass
class FewshotConfig:
    num: int = 0
    split: Optional[str] = None
    sampler: Union[str, Callable] = "default"
    samples: Union[Callable[[], list[dict]], list[dict], None] = None
    process_docs: Optional[Callable[[list[dict]], Iterable[dict]]] = None
    fewshot_indices: Optional[list[int]] = None
    rnd: int = field(init=False, default=False)

    def __post_init__(self) -> None:
        if self.samples is not None and not (
            isinstance(self.samples, list) or callable(self.samples)
        ):
            raise TypeError(
                "samples must be either list[dict] or callable returning list[dict]"
            )

        if self.split is not None and self.samples is not None:
            eval_logger.warning(
                "Both split and samples are configured; split will take precedence"
            )

    @property
    def has_source(self) -> bool:
        """Check if any fewshot source is configured."""
        return self.split is not None or self.samples is not None

    def _get_raw_docs(
        self, dataset
    ) -> Union[list[dict], Callable[[], Iterable[dict]], None]:
        """Get raw documents from configured source."""
        if self.split is not None:
            return dataset[self.split]

        if self.samples is not None:
            if isinstance(self.samples, list):
                return self.samples
            elif callable(self.samples):
                return self.samples
            else:
                raise TypeError(
                    "samples must be either a list of dicts or a callable returning a list"
                )

    def get_docs(self, dataset) -> Optional[Iterable[dict]]:
        """Get processed documents from configured source."""
        raw_docs = self._get_raw_docs(dataset)
        if raw_docs is None:
            return None

        if self.process_docs is not None:
            return self.process_docs(raw_docs)
        return raw_docs

    @property
    def get_sampler(self):
        from lm_eval.api import samplers

        if isinstance(self.sampler, str):
            return samplers.get_sampler(self.sampler)
        elif callable(self.sampler):
            return self.sampler

    def init_sampler(
        self, docs: list[dict], task: "Task", rnd=None, fewshot_indices=None
    ) -> "ContextSampler":
        """Initialize the sampler with the given documents and task."""
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd` of FewShotSampler!"
            )
        return self.get_sampler(
            docs,
            task,
            rnd=rnd,
            fewshot_indices=fewshot_indices
            if fewshot_indices
            else self.fewshot_indices,
        )


@dataclass
class DatasetConfig:
    """Encapsulates information about a dataset."""

    path: Optional[str] = None
    name: Optional[str] = None
    kwargs: Optional[dict] = field(default_factory=dict)
    custom: Optional[Callable] = None
Baber's avatar
Baber committed
126
    metadata: Optional[dict] = field(default_factory=dict)
Baber's avatar
Baber committed
127
128
129
130
131


@dataclass
class TaskConfig(dict):
    # task naming/registry
Baber's avatar
nit  
Baber committed
132
    task: str
Baber's avatar
Baber committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    task_alias: Optional[str] = None
    tag: Optional[Union[str, list]] = None
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
    custom_dataset: Optional[Callable] = None
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
    )
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_image: Union[Callable, str, None] = None
    doc_to_audio: Union[Callable, str, None] = None
    unsafe_code: bool = False
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
    description: str = ""
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
    fewshot_config: Optional[dict] = None
    # runtime configuration options
    num_fewshot: Optional[int] = 0
    # scoring options
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
    repeats: int = 1
    filter_list: Optional[list[dict]] = None
    should_decontaminate: bool = False
    doc_to_decontamination_query: Optional[str] = None
    gen_prefix: Optional[str] = None
Baber's avatar
nit  
Baber committed
174
175
176
177
    metadata: Optional[dict] = field(
        default_factory=dict
    )  # by default, not used in the code. allows for users to pass arbitrary info to tasks

Baber's avatar
Baber committed
178
179
    _metric_list: list[MetricConfig] = None
    _filter_list: list[FilterConfig] = None
Baber's avatar
nit  
Baber committed
180
181
    ds_cfg: DatasetConfig = field(init=False)
    fewshot_cfg: FewshotConfig = field(init=False)
Baber's avatar
Baber committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def __post_init__(self) -> None:
        ### ---setup generation kwargs--- ###
        if self.generation_kwargs is not None:
            if self.output_type != "generate_until":
                eval_logger.warning(
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
        else:
            if self.output_type == "generate_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
                    "do_sample": False,
                    "temperature": 0,
                }
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
        # ---setup dataset config--- #
        self.ds_cfg = DatasetConfig(
            path=self.dataset_path,
            name=self.dataset_name,
            kwargs=self.dataset_kwargs,
            custom=self.custom_dataset,
Baber's avatar
Baber committed
222
            metadata=self.metadata or {},
Baber's avatar
Baber committed
223
224
225
226
227
228
229
230
231
232
233
234
235
        )
        # ---setup fewshot config--- #
        _fewshot_cfg = self.fewshot_config if self.fewshot_config is not None else {}
        self.fewshot_cfg = FewshotConfig(
            split=self.fewshot_split,
            sampler=_fewshot_cfg.get("sampler", "default"),
            samples=_fewshot_cfg.get("samples", None),
            process_docs=_fewshot_cfg.get("process_docs", None),
            fewshot_indices=_fewshot_cfg.get("fewshot_indices", None),
        )

    @property
    def get_metrics(self) -> list["MetricConfig"]:
Baber's avatar
nit  
Baber committed
236
237
238
239
240
241
242
243
244
        from lm_eval.api.registry import (
            AGGREGATION_REGISTRY,
            DEFAULT_METRIC_REGISTRY,
            get_aggregation,
            get_metric,
            get_metric_aggregation,
            is_higher_better,
        )

Baber's avatar
Baber committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        metrics = []
        if self.metric_list is None:
            # ---------- 1. If no metrics defined, use defaults for output type ----------
            _metric_list = DEFAULT_METRIC_REGISTRY[self.output_type]
            eval_logger.info(
                f"No metrics defined in config, using default metrics for {self.output_type}={_metric_list}"
            )
            metrics.extend(
                MetricConfig(
                    name=metric_name,
                    fn=get_metric(metric_name),
                    aggregation_fn=get_metric_aggregation(metric_name),
                    higher_is_better=is_higher_better(metric_name),
                )
                for metric_name in _metric_list
            )
        else:
Baber's avatar
nit  
Baber committed
262
            # ---------- 2. Process user-defined metrics from config ----------
Baber's avatar
Baber committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            for metric_config in self.metric_list:
                metric_name = metric_config["metric"]
                _metric_fn_kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
                }
                _hf_evaluate_metric: bool = metric_config.get("hf_evaluate", False)
                _metric_fn = None
                _aggregation = None

                if self.process_results is not None:
                    # User will compute metrics inside `process_results()`
                    _metric_name = None
                    _metric_fn_kwargs = {}
                elif callable(metric_name):
                    # User passed a function object
                    _metric_name = metric_name.__name__
                    _metric_fn = metric_name.__call__
                else:
                    # Normal: look up by name
Baber's avatar
Baber committed
285
286
                    _metric_name = metric_name
                    _metric_fn = get_metric(metric_name, _hf_evaluate_metric)
Baber's avatar
Baber committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

                # ---------- 3. Decide how to aggregate examples ----------
                if "aggregation" in metric_config:
                    if isinstance(_agg_name := metric_config["aggregation"], str):
                        _aggregation = get_aggregation(_agg_name)
                    elif callable(_agg_name):  # noqa: E721
                        _aggregation = metric_config["aggregation"]
                else:
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    _aggregation = get_metric_aggregation(metric_name)
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[_aggregation]}"
                    )

                # ---------- 4. Determine “higher-is-better” semantics ----------
                if "higher_is_better" in metric_config:
                    _higher_is_better = metric_config["higher_is_better"]
                else:
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={is_higher_better(metric_name)}"
                    )
                    _higher_is_better = is_higher_better(metric_name)

                metrics.append(
                    MetricConfig(
                        name=_metric_name,
                        fn=_metric_fn,
                        kwargs=_metric_fn_kwargs,
                        aggregation_fn=_aggregation,
                        higher_is_better=_higher_is_better,
                        hf_evaluate=_hf_evaluate_metric,
                    )
                )
        return metrics

    @property
    def get_filters(self) -> list["FilterEnsemble"]:
Baber's avatar
nit  
Baber committed
328
329
        from lm_eval.filters import build_filter_ensemble

Baber's avatar
Baber committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        if not self.filter_list:
            eval_logger.debug(
                "No custom filters defined; falling back to 'take_first' for handling repeats."
            )
            return [build_filter_ensemble("none", [["take_first", None]])]
        else:

            def _strip_fn(d: dict) -> dict:
                return {k: v for k, v in d.items() if k != "function"}

            configs = (
                self.filter_list.values()
                if isinstance(self.filter_list, dict)
                else self.filter_list
            )

            return [
                build_filter_ensemble(
                    filter_name=cfg["name"],
                    components=[[_strip_fn(f) for f in cfg["filter"]]],
                )
                for cfg in configs
            ]

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
Baber's avatar
Baber committed
361
362
363
364
365
366
367
368
        def _ser(x):
            if isinstance(x, dict):
                return {k: _ser(v) for k, v in x.items()}
            if isinstance(x, (list, tuple, set)):
                return type(x)(_ser(i) for i in x)
            return maybe_serialize(x, keep_callable)

        return {k: _ser(v) for k, v in asdict(self).items() if v is not None}