squad.py 4.92 KB
Newer Older
1
import datasets
2
3
4
from math import exp
from lm_eval.base import rf
from lm_eval.metrics import f1_score, mean
5
from . common import HFTask
Charles Foster's avatar
Charles Foster committed
6
7
8
9
10
11
12
13
14
15
16

class SQuAD(HFTask):
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

17
18
19
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
20
    def training_docs(self):
21
        return self.data["train"]
Charles Foster's avatar
Charles Foster committed
22
23

    def validation_docs(self):
24
        return self.data["validation"]
Charles Foster's avatar
Charles Foster committed
25
26

    def fewshot_description(self):
27
28
        # TODO: figure out description
        return ""
Charles Foster's avatar
Charles Foster committed
29

30
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
31
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Question: ' + doc['question'] + '\n\n' + 'Answer:'
32
33
34
35
36
37
38

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
39
        return " " + answer
Charles Foster's avatar
Charles Foster committed
40

Leo Gao's avatar
Leo Gao committed
41
42
43
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
44

Leo Gao's avatar
Leo Gao committed
45
46
47
48
49
50
51
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
52
        continuation = rf.greedy_until(ctx, ['\n'])
53
54
        is_unanswerable = rf.loglikelihood(ctx, [' unanswerable'])
        return continuation, is_unanswerable
Leo Gao's avatar
Leo Gao committed
55
56
57
58
59
60
61
62
63
64
65
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
66
67
        squad_metric = datasets.load_metric("squad_v2")

68
        continuation, is_unanswerable = results
Leo Gao's avatar
Leo Gao committed
69

70
        logprob_unanswerable, is_greedy = is_unanswerable
71

72
73
        no_answer_probability = exp(logprob_unanswerable)
        
74
        predictions = [{
75
            'id': doc['id'],
Leo Gao's avatar
Leo Gao committed
76
            'prediction_text': continuation,
77
78
            'no_answer_probability': no_answer_probability,
        }]
79

80
        references = [{
81
82
            'id': doc['id'],
            'answers': doc['answers'],
83
        }]
84
85
86

        metrics = squad_metric.compute(predictions=predictions, references=references)

87
88
89
90
91
92
        metrics.pop('total', None)
        metrics.pop('HasAns_total', None)
        metrics.pop('NoAns_total', None)
        metrics.pop('best_exact_thresh', None)
        metrics.pop('best_f1_thresh', None)

93
        return metrics
Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
100

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
101
102
103
104
105
106
107
108
109
110
        return { 
            'exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'f1': mean, #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': mean, # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': mean, # The F-score of predicted tokens versus the gold answer
            'best_exact': mean, # Best exact match (with varying threshold)
            'best_f1': mean, # Best F1 (with varying threshold)
        }
Leo Gao's avatar
Leo Gao committed
111
112
113
114
115
116
117

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
118
119
120
121
122
123
124
125
126
127
        return { 
            'exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'f1': True, #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'best_exact': True, # Best exact match (with varying threshold)
            'best_f1': True, # Best F1 (with varying threshold)
        }