huggingface.py 56.2 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import torch
8
import torch.nn.functional as F
9
import transformers
Jeevan's avatar
Jeevan committed
10
11
12
13
14
15
from accelerate import (
    Accelerator,
    DistributedType,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
16
from huggingface_hub import HfApi
17
18
19
20
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
21
22
23
24
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
25
26

from lm_eval import utils
baberabb's avatar
baberabb committed
27
from lm_eval.api.instance import Instance
28
from lm_eval.api.model import TemplateLM
29
from lm_eval.api.registry import register_model
30
31
32
33
34
35
36
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
37

38

39
eval_logger = utils.eval_logger
40

lintangsutawika's avatar
lintangsutawika committed
41

42
43
44
45
46
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
47
    gpus: Optional[int] = None,
48
49
50
51
52
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
53
            device_idx: max_memory_per_gpu for device_idx in range(gpus)
54
55
56
57
58
59
60
61
62
63
64
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
65
66


67
@register_model("hf-auto", "hf", "huggingface")
68
class HFLM(TemplateLM):
69
70
71
72
73
74
75
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

76
    AUTO_MODEL_CLASS = None
77
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
78

79
80
    def __init__(
        self,
81
        pretrained: Union[str, transformers.PreTrainedModel],
Baber Abbasi's avatar
Baber Abbasi committed
82
83
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
84
85
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
86
87
88
89
90
91
92
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
93
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
94
        logits_cache: bool = True,
95
96
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
97
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
98
99
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
100
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
101
        use_fast_tokenizer: Optional[bool] = True,
102
        add_bos_token: Optional[bool] = False,
103
        prefix_token_id: Optional[int] = None,
104
        # arguments used for splitting a model across GPUs naively.
105
106
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
107
108
109
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
110
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
111
        # PEFT, delta weights and quantization options
112
        peft: Optional[str] = None,
113
        delta: Optional[str] = None,
114
115
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
116
    ) -> None:
117
118
        super().__init__()

119
120
121
122
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
123
            )
124
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
125
126
127
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
128
            gpus = 0
129
130
131
132
133
134

            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
135
            else:
136
137
138
139
140
141
142
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
143
                )
144

145
        else:
146
147
148
149
150
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
151
152
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
153
154
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
155

156
157
158
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

159
160
161
162
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
163
                    + [f"cuda:{i}" for i in range(gpus)]
164
                    + ["mps", "mps:0"]
165
                    + [f"npu:{i}" for i in range(gpus)]
166
                )
167
                if device and device in device_list:
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
            else:
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
190
                self._device = torch.device(device)
191

192
193
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
194

195
            self._get_config(
196
197
198
199
200
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

201
202
203
204
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
205

206
207
208
209
210
211
212
213
214
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

215
216
217
218
219
220
221
222
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
223
                gpus=gpus,
224
225
226
227
228
                device_map_option=device_map_option,
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
229
                delta=delta,
230
231
                autogptq=autogptq,
                **kwargs,
232
233
            )

234
        # access self._model through self.model property outside this method
235
236
237
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
238

239
        if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
240
241
            # TODO: can remove this whole snippet except in the mps case, perhaps?
            if not (parallelize or autogptq or hasattr(self, "accelerator")):
242
243
244
245
246
247
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
248
249
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
250
251
                    )

lintangsutawika's avatar
lintangsutawika committed
252
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
253
        self.logits_cache = logits_cache
254
        self.vocab_size = self.tokenizer.vocab_size
255
        # select (or create) a pad token to use
haileyschoelkopf's avatar
haileyschoelkopf committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
            if getattr(self.config, "model_type", None) == "qwen":
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
            elif (
                self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
                or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
            ):
                # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
                # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
                # ---
                # Note that the world tokenizer class name, might change in the future for the final huggingface merge
                # https://github.com/huggingface/transformers/pull/26963
                assert self.tokenizer.pad_token_id == 0
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
278

haileyschoelkopf's avatar
haileyschoelkopf committed
279
        # TODO: override this for Gemma
280
        self.add_bos_token = add_bos_token
haileyschoelkopf's avatar
haileyschoelkopf committed
281
        if getattr(self.config, "model_type", None) == "gemma":
282
            self.add_bos_token = True
283
            eval_logger.info(
284
                f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
285
286
            )

287
        self._max_length = max_length
288
289
290
291
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
292
293
294
295
296
297
298
299
300
301
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
317
                else:
318
319
320
321
322
323
324
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
325
326
327
328
329
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
330
                            DistributedType.MULTI_NPU,
331
332
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
333
334
335
336
337
338
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
339
                    self._device = torch.device(f"{accelerator.device}")
340
                    self.accelerator = accelerator
341

342
343
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
344

345
346
347
348
349
350
351
352
353
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
354

355
        self.custom_prefix_token_id = prefix_token_id
356
357
358
359
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
360

361
362
363
364
365
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

366
367
368
369
370
371
372
373
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

374
375
376
377
378
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

379
380
381
382
383
384
385
386
387
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

388
389
    @property
    def max_length(self):
390
391
392
393
394
395
396
397
398
399
400
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
401

402
    @property
Ethan Smith's avatar
Ethan Smith committed
403
    def max_gen_toks(self) -> int:
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
422
423
424
425
426
427
428
429
430
431
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

    @property
    def chat_template(self) -> str:
        if self.tokenizer.chat_template is not None:
            return self.tokenizer.chat_template
        return self.tokenizer.default_chat_template

432
433
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
434
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
435
436
437
438
439
440
441
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
haileyschoelkopf's avatar
haileyschoelkopf committed
442
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
443
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
444
445
446
447
448
449
450
451
        # escape hatch: if we're using a subclass that shouldn't follow
        # the default _get_backend logic,
        # then skip over the method.
        # TODO: this seems very much undesirable in some cases--our code in HFLM
        # references AutoModelForCausalLM at times to check for equality
        if self.AUTO_MODEL_CLASS is not None:
            return

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
515
        gpus: Optional[int] = None,
516
517
518
519
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
520
        # PEFT, delta weights and quantization options
521
        peft: Optional[str] = None,
522
        delta: Optional[str] = None,
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
543
                    device_map_option,  # TODO: phase out device_map_option?
544
545
546
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
547
                    gpus,
548
549
                )
            )
550
551
552
553
554
555
        elif "device_map" not in model_kwargs:
            # set a device_map to initialize model on the right GPU.
            # this is needed because it seems that the default behavior
            # for quantized models now seems to be device_map="auto"
            # which breaks data-parallel mode.
            if hasattr(self, "accelerator"):
556
                model_kwargs.update({"device_map": {"": f"{self.accelerator.device}"}})
557
558
559
            else:
                model_kwargs.update({"device_map": {"": str(self.device)}})

560
561
562
563
564
565
566
567
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
568
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
569
570
571
572
573
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
574
                torch_dtype=get_dtype(dtype),
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

597
598
599
600
601
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

602
603
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
604
605
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
606
607
608
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
                self._model.resize_token_embeddings(len(self.tokenizer))
609
610
611
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
612
613
614
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
690
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
691
692
693
694
695
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
696
697
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
698
699
        else:
            max_length = self.max_length
700
701
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
702

Benjamin Fattori's avatar
Benjamin Fattori committed
703
704
705
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
706
707
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
708
709
710
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
711
712
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
713
714
715
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
716
717
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
718
719
720
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
721
            for _ in range(5):
722
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
723

Benjamin Fattori's avatar
Benjamin Fattori committed
724
725
            return batch_size

726
727
728
729
730
731
732
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
733

734
735
736
737
738
739
740
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
741
            clear_torch_cache()
742
743
            return batch_size

744
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
745
746
        return batch_size

baberabb's avatar
baberabb committed
747
748
749
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
750
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
751
752
753
754
755
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
756
757
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
758
759
760
761
762
763
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
764

Lintang Sutawika's avatar
Lintang Sutawika committed
765
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
766

767
768
769
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
770

771
772
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
773
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
774
775
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
776
        padding_side: str = "left",
777
778
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
779
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
780
781
782
783
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
784
        add_special_tokens = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
785
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
786
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
787
788
789

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
790
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
791
792
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
793
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
794
795
796
797
798
799
800
801
802
803
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
804
805
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
806
807
808

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
809
        :param inps: torch.Tensor
810
811
812
813
814
815
816
817
818
819
820
821
822
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
823
824
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
825
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
826
827
828
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
829
830
831
832
833
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
834
        # temperature = 0.0 if not set
835
836
837
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
838
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
839
        do_sample = generation_kwargs.get("do_sample", None)
840
841
842
843
844

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
845
846
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
847
848
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
849
            self.tokenizer, stop, context.shape[1], context.shape[0]
850
        )
851
        return self.model.generate(
852
            input_ids=context,
853
854
            max_length=max_length,
            stopping_criteria=stopping_criteria,
855
            pad_token_id=self.tokenizer.pad_token_id,
856
857
858
            use_cache=True,
            **generation_kwargs,
        )
859

Baber Abbasi's avatar
Baber Abbasi committed
860
861
862
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
863
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
864
865
866
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
867
868
869
870
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
871
872
873
874
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
875
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
876
877
            logits = logits[:contlen]

878
879
        return logits

880
881
882
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
883
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
884
885
886
887
888
889
890
891
892

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

893
894
895
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
896
897
898
899
900
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
901
                        prefix_token=self.prefix_token_id,
902
903
904
905
906
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
907
908

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
924
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
925
926
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
927
928
929
930
931
932
933
934
935
936
937
938
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
939

940
941
942
943
944
945
946
947
948
949
950
951
952
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
953
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
954
955
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
956

Ethan Smith's avatar
Ethan Smith committed
957
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
958
959
960
961
962
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
963
964
965
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
966
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
967
            """Defines the key for the sorted method"""
968
969
970
971
972
973
974
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
975
            toks = req[1] + req[2]
976
977
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
978
979
980
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
981
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
982
983
984
985
986
987
988
989
990
991
992
993
994
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
            and self.logits_cache
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
995
996
997

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
998
999
1000
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1001
1002
1003
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1004
1005
1006
1007
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1008
1009
1010
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1011
            else None
1012
1013
        )

Baber Abbasi's avatar
Baber Abbasi committed
1014
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1015
1016
1017
1018
1019
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1020
        for chunk in chunks:
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1040
                # how this all works (illustrated on a causal decoder-only setup):
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1052
1053
                        device=self.device,
                    )
1054
1055
1056
1057
1058
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1059
                        device=self.device,
1060
                    )
1061
                    (inplen,) = inp.shape
1062
1063
1064
1065

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1066
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1067
                        (continuation_enc)[-self.max_length :],
1068
1069
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1070
                        dtype=torch.long,
1071
1072
                        device=self.device,
                    )
1073
1074
                    (contlen,) = cont.shape

1075
1076
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1077
1078
1079
1080
1081
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1082

haileyschoelkopf's avatar
haileyschoelkopf committed
1083
1084
1085
1086
1087
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1088
1089
1090
1091

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1092

1093
1094
1095
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
1096
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1097
1098
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1099
1100
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
1101
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1102
1103
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1104
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1105
1106
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1107
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1108
1109
1110
1111
1112
1113
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1114
1115
1116

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1117
            )  # [batch, padding_length (inp or cont), vocab]
1118

Baber Abbasi's avatar
Baber Abbasi committed
1119
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1120
1121
1122
1123
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1124
                # take only logits in the continuation
1125
                # (discard context toks if decoder-only ; discard right-padding)
1126
1127
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1128
                ctx_len = (
1129
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
1131
1132
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1133
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1134
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1135
1136
1137
1138

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

                    self.cache_hook.add_partial("loglikelihood", request_str, answer)
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1168
1169

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1170

1171
1172
        return re_ord.get_original(res)

1173
1174
1175
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1176
        res = []
1177

Baber Abbasi's avatar
Baber Abbasi committed
1178
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1179
            """Defines the key for the sorted method"""
1180
1181
1182
1183
1184
1185
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1186
1187
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1188

1189
1190
        pbar = tqdm(
            total=len(requests),
1191
            disable=(disable_tqdm or (self.rank != 0)),
1192
1193
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1194
        adaptive_batch_size = None
1195
1196
1197
1198
1199
1200
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1201
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1214

Baber Abbasi's avatar
Baber Abbasi committed
1215
1216
1217
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1218
1219
1220
1221
1222
1223
1224
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1238
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1239
1240
1241
1242
1243
1244
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1245
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1246
                )
1247
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1248
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1249
            if not until:
1250
1251
1252
                until = [eos]
            else:
                until.append(eos)
Baber Abbasi's avatar
Baber Abbasi committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1274

Baber Abbasi's avatar
Baber Abbasi committed
1275
1276
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1277

Baber Abbasi's avatar
Baber Abbasi committed
1278
1279
1280
1281
1282
1283
1284
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1285

Baber Abbasi's avatar
Baber Abbasi committed
1286
1287
1288
1289
1290
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1291

Baber Abbasi's avatar
Baber Abbasi committed
1292
                s = self.tok_decode(cont_toks)
1293

Baber Abbasi's avatar
Baber Abbasi committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1307

1308
        pbar.close()
1309

Baber Abbasi's avatar
Baber Abbasi committed
1310
        return res
1311

KonradSzafer's avatar
KonradSzafer committed
1312
1313
1314
1315
1316
1317
1318
1319
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
        return self.tokenizer.apply_chat_template(
            chat_history, tokenize=False, add_generation_prompt=True
        )

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info