huggingface.py 31.5 KB
Newer Older
1
2
3
import torch
import transformers
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
4
from peft import __version__ as PEFT_VERSION, PeftModel
5
6

import copy
7
from collections import defaultdict
8
from tqdm import tqdm
9
from pathlib import Path
10
11
12
13
14
15
16
17
18
19
20

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

from accelerate import Accelerator
21
from typing import List, Optional, Union
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
47
48


49
@register_model("hf-auto", "hf", "huggingface")
50
class HFLM(LM):
51
52
53
54
55
56
57
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

58
    AUTO_MODEL_CLASS = None
59
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
60

61
62
    def __init__(
        self,
63
64
65
66
67
68
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
69
        dtype: Optional[Union[str, torch.dtype]] = "auto",
70
71
72
        batch_size: Optional[int] = 1,
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
73
        # arguments used for splitting a model across GPUs naively.
74
75
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
76
77
78
79
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
80
81
82
83
84
85
86
87
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
88
89
90
91
92
93
94
95
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

        gpus = torch.cuda.device_count()
haileyschoelkopf's avatar
haileyschoelkopf committed
96

97
98
        if gpus <= 1 and not parallelize:
            # use user-passed device
99
100
101
102
103
104
105
106
107
108
109
110
111
            if device:
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
112
        else:
113
114
115
116
            eval_logger.info(
                f"Passed device '{device}', but using `accelerate launch` or `parallelize=True`. This will be overridden when placing model."
            )
            # TODO: include in warning that `load_in_8bit` etc. affect this too
117
118
119
            self._device = device

        model_kwargs = {}
120
        if parallelize:
121
122
123
124
125
126
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
127
128
129
130
131
132
133

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
134
            trust_remote_code=trust_remote_code,
135
136
137
138
139
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
140
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
141

haileyschoelkopf's avatar
haileyschoelkopf committed
142
143
144
145
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
171
172
173
174
175
176
177
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

197
        # forever after, access self._model through self.model property
198
        self.model.eval()
199
200
201
202
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
            self.model.to(self.device)
haileyschoelkopf's avatar
haileyschoelkopf committed
203

204
205
206
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
207
            trust_remote_code=trust_remote_code,
208
209
210
        )

        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
211
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
212

213
214
        self._max_length = max_length

215
        # multithreading and batching
216
217
218
219
        self.batch_size_per_gpu = batch_size

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
220
            accelerator = Accelerator()
221
222
223
224
225
226
227
228
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
229
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
                self.model.to(self.device)
            else:
haileyschoelkopf's avatar
haileyschoelkopf committed
247
                self._model = accelerator.prepare(self.model)
248
249
250
251
252
253
254
255
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
256

257
258
259
260
261
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

262
263
264
265
266
267
268
269
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

270
271
272
273
274
275
276
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
277
278
279
280
281
282
283
284
285
286
287
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
310
        """ """
311
312
313
314
315
316
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
317

318
319
320
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
321

322
323
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def tok_batch_encode(
        self, strings: List[str], padding_side="left", left_truncate_len=None
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

351
352
353
354
355
356
357
358
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
359
        :param inps: torch.Tensor
360
361
362
363
364
365
366
367
368
369
370
371
372
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
373
374
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
375
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
376
377
378
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
379
380
381
382
383
384
385
386
387
388
389
390
391
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
392
393
394
395
396
397
398
399
        return self.model.generate(
            context,
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
400
401
402

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
403
404
405
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
406
407
408
409
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
410
411
412
413
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
414
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
415
416
            logits = logits[:contlen]

417
418
        return logits

419
420
421
422
423
424
425
426
427
428
429
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

430
431
432
433
434
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
435
436
437
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
438
            else:
439
                context_enc, continuation_enc = self._encode_pair(context, continuation)
440
441
442
443
444
445
446
447
448
449
450
451
452

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
453
                        prefix_token=self.eot_token_id,
454
455
456
457
458
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
459
460

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # TODO: automatic (variable) batch size detection for vectorization
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
        ):
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
530
                # how this all works (illustrated on a causal decoder-only setup):
531
532
533
534
535
536
537
538
539
540
541
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
542
543
                        device=self.device,
                    )
544
545
546
547
548
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
549
                        device=self.device,
550
                    )
551
                    (inplen,) = inp.shape
552
553
554
555

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

556
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
557
                        (continuation_enc)[-self.max_length :],
558
559
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
560
                        dtype=torch.long,
561
562
                        device=self.device,
                    )
563
564
                    (contlen,) = cont.shape

565
566
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
567
568
569
570
571
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
572

haileyschoelkopf's avatar
haileyschoelkopf committed
573
574
575
576
577
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
578
579
580
581

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
582

583
584
585
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
586
587
588
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
589
590
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
591
592
593
594
595
596
597
598
599
600
601
602
603
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
604
605
606

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
607
            )  # [batch, padding_length (inp or cont), vocab]
608
609
610
611
612
613

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
614
                # take only logits in the continuation
615
                # (discard context toks if decoder-only ; discard right-padding)
haileyschoelkopf's avatar
haileyschoelkopf committed
616
617
618
619
620
                ctx_len = (
                    inplen
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
621
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
622
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
623
624
625

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
626
627
628
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
644
645
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)

646
647
648
        return re_ord.get_original(res)

    def greedy_until(self, requests):
649
650
        res = defaultdict(list)
        re_ords = {}
651
652

        def _collate(x):
653
654
655
656
657
658
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
659
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
660
            return -len(toks), x[0]
661

662
663
664
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
665
666
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
667
            # within each set of reqs for given kwargs, we reorder by token length, descending.
668
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
669

670
671
672
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))

        # for each different set of kwargs, we execute all requests, by batch.
673
674
        for key, re_ord in re_ords.items():
            for chunk in utils.chunks(
haileyschoelkopf's avatar
haileyschoelkopf committed
675
                re_ord.get_reordered(),
676
677
678
                self.batch_size,
            ):
                contexts, all_gen_kwargs = zip(*chunk)
679
680
681
682
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
683
684
685
686
687
688
689
690
691
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
692
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
693
694
695
                            )
                else:
                    raise ValueError(
696
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
697
698
699
700
701
702
703
704
705
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
                (primary_until) = until[0]
706

707
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
708
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
709
710
711
712
713
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
714

715
                # encode, pad, and truncate contexts for this batch
716
717
718
719
720
721
                context_enc, attn_masks = self.tok_batch_encode(
                    contexts, left_truncate_len=max_ctx_len
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

722
                # perform batched generation
723
724
725
726
727
728
729
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    max_length=context_enc.shape[1] + max_gen_toks,
                    stop=primary_until,
                    **kwargs,
                )
730

731
732
733
734
735
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
736

737
                    s = self.tok_decode(cont_toks)
738

739
740
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
741
742
743
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
744
                            s = s.split(term)[0]
745

746
                    res[key].append(s)
747

748
749
750
751
                    self.cache_hook.add_partial(
                        "greedy_until", (context, gen_kwargs), s
                    )
                    pbar.update(1)
752
            # reorder this group of results back to original unsorted form
753
            res[key] = re_ord.get_original(res[key])
754

755
        pbar.close()
756

757
        return grouper.get_original(res)