metrics.py 20.7 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
import logging
&'s avatar
& committed
4
import math
5
import os
6
import random
7
8
import re
import string
Baber's avatar
Baber committed
9
10
from collections.abc import Callable, Iterable, Sequence
from typing import Generic, TypeVar
11
12

import numpy as np
&'s avatar
& committed
13

14
from lm_eval.api.registry import register_aggregation, register_metric
15

lintangsutawika's avatar
lintangsutawika committed
16

17
18
T = TypeVar("T")

Lintang Sutawika's avatar
Lintang Sutawika committed
19
eval_logger = logging.getLogger(__name__)
20

21

22
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
23
24
25
26
27
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


28
@register_aggregation("nanmean")
Baber's avatar
Baber committed
29
def nanmean(arr: list[float]) -> float:
30
31
32
33
34
    if len(arr) == 0 or all(np.isnan(arr)):
        return np.nan
    return np.nanmean(arr)


35
@register_aggregation("mean")
Baber's avatar
Baber committed
36
def mean(arr: Sequence[float]) -> float:
37
38
39
40
    return sum(arr) / len(arr)


@register_aggregation("median")
Baber's avatar
Baber committed
41
def median(arr: list[float]) -> float:
42
43
44
    return arr[len(arr) // 2]


45
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
46
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
47
@register_aggregation("perplexity")
Baber's avatar
Baber committed
48
def perplexity(items: list[float]) -> float:
49
50
51
52
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
Baber's avatar
Baber committed
53
def weighted_perplexity(items: list[tuple[float, float]]) -> float:
54
55
56
57
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
Baber's avatar
Baber committed
58
def bits_per_byte(items: list[tuple[float, float]]) -> float:
59
60
61
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
@register_aggregation("f1")
def f1_score(items):
64
65
    from sklearn.metrics import f1_score

haileyschoelkopf's avatar
haileyschoelkopf committed
66
67
68
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
69
    fscore = f1_score(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
70
71
72
73
74

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
Baber's avatar
Baber committed
75
def matthews_corrcoef(items: Iterable[tuple[int, int] | tuple[str, str]]) -> float:
76
77
    from sklearn.metrics import matthews_corrcoef

haileyschoelkopf's avatar
haileyschoelkopf committed
78
79
80
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
81
    return matthews_corrcoef(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
82
83


84
@register_aggregation("bleu")
Baber's avatar
Baber committed
85
def bleu(items: Iterable[tuple[str, str]]):
86
87
88
89
90
91
92
93
94
95
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
Baber's avatar
Baber committed
96
97
    import sacrebleu

98
99
100
101
102
103
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


104
105
106
107
108
109
110
111
112
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
Baber's avatar
Baber committed
113
114
    import sacrebleu

115
116
117
118
119
120
121
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
Baber's avatar
Baber committed
122
def ter(items: Iterable[tuple[str, str]]):
123
124
125
126
127
128
129
130
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
Baber's avatar
Baber committed
131
132
    import sacrebleu

133
134
135
136
137
138
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
139
@register_aggregation("brier_score")
Baber's avatar
Baber committed
140
141
142
def brier_score(
    items: Iterable[tuple[str, float]],
):  # This is a passthrough function
Lintang Sutawika's avatar
Lintang Sutawika committed
143
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
144
145
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
146
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
147
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
148
149
150
151
152
153
154
155
156
157
158
159
160
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


161
162
163
164
165
166
167
168
169
170
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


171
172
173
174
175
176
177
178
179
180
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


181
182
183
184
185
186
187
188
189
190
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
210
211
212
213
214
215
216
    predictions: Iterable[str] | str,
    references: Iterable[str] | str,
    regexes_to_ignore: list[str] | None = None,
    ignore_case: bool = False,
    ignore_punctuation: bool = False,
    ignore_numbers: bool = False,
    multi_target: bool = False,
217
):
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    """
    Compute exact match scores between predictions and references.

    This function computes the exact match score by comparing predictions
    and references. It supports optional preprocessing steps such as ignoring
    case, punctuation, numbers, and specific regex patterns.

    Note:
        predictions and references can have different lengths.
        numpy broadcasting rule applies

    Args:
        predictions (Iterable[str] | str): The predicted strings to evaluate.
        references (Iterable[str] | str): The reference strings to compare against.
        regexes_to_ignore (list[str], optional): A list of regex patterns to remove
            from both predictions and references before comparison. Defaults to None.
        ignore_case (bool, optional): If True, ignores case differences during comparison.
            Defaults to False.
        ignore_punctuation (bool, optional): If True, removes punctuation from strings
            before comparison. Defaults to False.
        ignore_numbers (bool, optional): If True, removes numeric characters from strings
            before comparison. Defaults to False.
        multi_target (bool, optional): If True, returns 1.0 if any prediction matches any
            reference, otherwise 0.0. Defaults to False.

    Returns:
        dict: A dictionary containing the exact match score:
            - "exact_match" (float): The mean exact match score or 1.0/0.0 if `multi_target` is True.
    """
    predictions, references = list(predictions), list(references)
    assert len(predictions) == len(references) if not multi_target else True, (
        "predictions and references must have the same length unless `multi_target` is True"
    )

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

276
277
278
279
280
    return {
        "exact_match": np.mean(score_list)
        if not multi_target
        else float(np.any(score_list))
    }
281
282
283


###
284
285


286
287
288
289
290
291
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
292
293
def exact_match_fn(references: list[str], predictions: list[str], **kwargs):
    return exact_match_hf_evaluate(predictions, references, **kwargs)
294
295


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
Baber's avatar
Baber committed
312
def word_perplexity_fn(items: T) -> T:  # This is a passthrough function
313
314
315
316
317
318
319
320
321
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
Baber's avatar
Baber committed
322
def byte_perplexity_fn(items: T) -> T:  # This is a passthrough function
323
324
325
326
327
328
329
330
331
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
Baber's avatar
Baber committed
332
def bits_per_byte_fn(items: T) -> T:  # This is a passthrough function
333
334
    return items

&'s avatar
& committed
335

Leo Gao's avatar
Leo Gao committed
336
def pop_stddev(arr):
337
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
338
339
340
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Baber's avatar
Baber committed
341
def sample_stddev(arr: Sequence[float]) -> float:
342
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
343
344
345
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
346
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
347
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
348
349


Baber Abbasi's avatar
Baber Abbasi committed
350
351
352
353
354
355
356
357
358
359
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
360
361
362
363
364
365
366
367
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
368
369
370


@register_metric(
371
    metric="f1",
372
373
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
374
    aggregation="f1",
375
)
376
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
377
    return items
378
379


380
381
382
@register_metric(
    metric="bleu",
    higher_is_better=True,
383
    output_type="generate_until",
384
385
386
387
388
389
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


390
391
392
@register_metric(
    metric="chrf",
    higher_is_better=True,
393
    output_type="generate_until",
394
395
396
397
398
399
400
401
402
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
403
    output_type="generate_until",
404
405
406
407
408
409
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
452
453
454
455
456
457
458
459
460
461

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


Baber's avatar
Baber committed
462
def weighted_mean(items: list[tuple[float, float]]) -> float:
463
464
465
466
467
468
469
470
471
472
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
Baber's avatar
Baber committed
473
    # Sacrebleu expects (list[str], list[list[str])
474
475
476
477
478
479
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

Baber's avatar
Baber committed
480
481
    # We expect refs to be list[str] or list[list[str]], the outer list corresponding to preds
    # Must become list[list[str]] with the inner list corresponding to preds
482
483
484
485
486
487
488
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

Baber's avatar
Baber committed
489
    # We expect preds to be list[str] or list[list[str]]. Must become list[str]
490
491
492
493
494
495
496
497
498
499
500
501
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Baber's avatar
Baber committed
502
class _bootstrap_internal(Generic[T]):
503
504
505
506
507
508
    """
    Pool worker: `(i, xs)` → `n` bootstrap replicates
    of `f(xs)`using a RNG seeded with `i`.
    """

    def __init__(self, f: Callable[[Sequence[T]], float], n: int) -> None:
Leo Gao's avatar
Leo Gao committed
509
510
        self.f = f
        self.n = n
511

512
    def __call__(self, v: tuple[int, Sequence[T]]) -> list[float]:
Leo Gao's avatar
Leo Gao committed
513
514
515
516
517
518
519
520
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
521

522
523
524
525
526
527
528
def _bootstrap_internal_no_mp(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> list[float]:
    """
    Single-process fallback: compute `iters` bootstrap replicates
    of statistic`f(xs)`, chunked (≤ 1000 draws).
    """
Leo Gao's avatar
Leo Gao committed
529
    res = []
530
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
531
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    print(f"bootstrapping for stddev: {f.__name__}")

    # A single loop replaces the multiprocessing pool.
    for i in tqdm(range(iters // chunk_size)):
        rnd = random.Random(i)
        for _ in range(chunk_size):
            res.append(f(rnd.choices(xs, k=len(xs))))

    return res


def bootstrap_stderr(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> float:
    """
    Bootstrap estimate of the standard error of statistic `f(xs)`
    using up to `iters` resamples, chunked (≤ 1000 draws)

    Executes in parallel unless the env-var `DISABLE_MULTIPROC` is set;
    """
    if not os.getenv("DISABLE_MULTIPROC"):
        import multiprocessing as mp

        # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
        # equivalent to stderr calculated without Bessel's correction in the stddev.
        # Unfortunately, I haven't been able to figure out what the right correction is
        # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
        # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
        # Thankfully, shouldn't matter because our samples are pretty big usually anyways
        res = []
        chunk_size = min(1000, iters)
        from tqdm import tqdm

        print("bootstrapping for stddev:", f.__name__)
567
568
569
570
571
572
573
574
575
576
        with mp.Pool(mp.cpu_count()) as pool:
            for bootstrap in tqdm(
                pool.imap(
                    _bootstrap_internal(f, chunk_size),
                    [(i, xs) for i in range(iters // chunk_size)],
                ),
                total=iters // chunk_size,
            ):
                # sample w replacement
                res.extend(bootstrap)
577
578
579
    else:
        res = _bootstrap_internal_no_mp(f, xs, iters)

Leo Gao's avatar
Leo Gao committed
580
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
581
582


583
584
def stderr_for_metric(
    metric: Callable[[Sequence[T]], float], bootstrap_iters: int
Baber's avatar
Baber committed
585
) -> Callable[[Sequence[T]], float] | None:
586
587
588
589
590
591
592
593
594
    """
    Return a function that estimates the standard error of `metric(xs)`.

    * If `bootstrap_iters > 0` and the metric is in the pre-approved
      bootstrappable list, use `bootstrap_stderr` with that many draws.
    * If the metric has a closed-form SE (e.g. `mean`, `acc_all`), use it.
    * Otherwise, return `None`.
    """

595
596
597
598
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

599
600
601
602
603
604
605
606
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
607
        nanmean,
608
609
610
611
612
613
614
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

Baber's avatar
Baber committed
615
    return stderr.get(metric)
616
617


Baber's avatar
Baber committed
618
def pooled_sample_stderr(stderrs: list[float], sizes: list[int]):
619
620
621
622
623
624
625
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
626
627
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
628
629
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
630
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
631
632
    ) / (sum(sizes) - len(sizes))

633
    return np.sqrt(pooled_sample_var / sum(sizes))
634
635


Baber's avatar
Baber committed
636
def combined_sample_stderr(stderrs: list[float], sizes: list[int], metrics=None):
Baber Abbasi's avatar
Baber Abbasi committed
637
638
639
    assert metrics is not None, (
        "Need to pass a list of each subtask's metric for this stderr aggregation"
    )
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


Baber's avatar
Baber committed
668
669
670
def aggregate_subtask_metrics(
    metrics: list[float], sizes: list[float], weight_by_size: bool = True
):
671
672
673
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
674
    if not weight_by_size:
675
676
677
678
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Baber's avatar
Baber committed
679
    return sum(metric * size for metric, size in zip(metrics, sizes)) / sum(sizes)