registry.py 5.5 KB
Newer Older
1
import logging
Baber's avatar
Baber committed
2
from typing import TYPE_CHECKING, Callable, Dict, Optional, Union
3

4

Baber's avatar
Baber committed
5
6
if TYPE_CHECKING:
    from lm_eval.api.model import LM
lintangsutawika's avatar
lintangsutawika committed
7

Lintang Sutawika's avatar
Lintang Sutawika committed
8
eval_logger = logging.getLogger(__name__)
9
10

MODEL_REGISTRY = {}
Baber's avatar
cleanup  
Baber committed
11
12
DEFAULTS = {
    "model": {"max_length": 2048},
Baber's avatar
Baber committed
13
    "tasks": {"generate_until": {"max_gen_toks": 256}},
Baber's avatar
cleanup  
Baber committed
14
}
15
16
17


def register_model(*names):
Baber's avatar
Baber committed
18
19
    from lm_eval.api.model import LM

20
21
22
23
24
    # either pass a list or a single alias.
    # function receives them as a tuple of strings

    def decorate(cls):
        for name in names:
Baber Abbasi's avatar
Baber Abbasi committed
25
26
27
            assert issubclass(cls, LM), (
                f"Model '{name}' ({cls.__name__}) must extend LM class"
            )
28

Baber Abbasi's avatar
Baber Abbasi committed
29
30
31
            assert name not in MODEL_REGISTRY, (
                f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."
            )
32
33
34
35
36
37
38

            MODEL_REGISTRY[name] = cls
        return cls

    return decorate


Baber's avatar
Baber committed
39
def get_model(model_name: str) -> type["LM"]:
haileyschoelkopf's avatar
haileyschoelkopf committed
40
41
42
    try:
        return MODEL_REGISTRY[model_name]
    except KeyError:
43
44
45
        raise ValueError(
            f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}"
        )
46
47
48
49


TASK_REGISTRY = {}
GROUP_REGISTRY = {}
50
ALL_TASKS = set()
51
52
53
func2task_index = {}


Baber's avatar
Baber committed
54
def register_task(name: str):
55
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
56
57
58
        assert name not in TASK_REGISTRY, (
            f"task named '{name}' conflicts with existing registered task!"
        )
59
60

        TASK_REGISTRY[name] = fn
61
        ALL_TASKS.add(name)
62
63
64
65
66
67
68
69
70
71
72
73
74
        func2task_index[fn.__name__] = name
        return fn

    return decorate


def register_group(name):
    def decorate(fn):
        func_name = func2task_index[fn.__name__]
        if name in GROUP_REGISTRY:
            GROUP_REGISTRY[name].append(func_name)
        else:
            GROUP_REGISTRY[name] = [func_name]
75
            ALL_TASKS.add(name)
76
77
78
79
80
81
        return fn

    return decorate


OUTPUT_TYPE_REGISTRY = {}
82
83
METRIC_REGISTRY = {}
METRIC_AGGREGATION_REGISTRY = {}
Baber Abbasi's avatar
Baber Abbasi committed
84
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {}
85
HIGHER_IS_BETTER_REGISTRY = {}
86
FILTER_REGISTRY = {}
87
88
89
90
91
92
93

DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
94
    "multiple_choice": ["acc", "acc_norm"],
95
    "generate_until": ["exact_match"],
96
97
98
99
100
101
102
103
104
105
106
107
}


def register_metric(**args):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert "metric" in args
        name = args["metric"]

        for key, registry in [
            ("metric", METRIC_REGISTRY),
            ("higher_is_better", HIGHER_IS_BETTER_REGISTRY),
108
            ("aggregation", METRIC_AGGREGATION_REGISTRY),
109
110
111
        ]:
            if key in args:
                value = args[key]
Baber Abbasi's avatar
Baber Abbasi committed
112
113
114
                assert value not in registry, (
                    f"{key} named '{value}' conflicts with existing registered {key}!"
                )
115
116
117
118
119
120
121
122
123
124
125
126
127

                if key == "metric":
                    registry[name] = fn
                elif key == "aggregation":
                    registry[name] = AGGREGATION_REGISTRY[value]
                else:
                    registry[name] = value

        return fn

    return decorate


Baber's avatar
Baber committed
128
def get_metric(name: str, hf_evaluate_metric=False) -> Optional[Callable]:
129
130
131
132
133
134
135
    if not hf_evaluate_metric:
        if name in METRIC_REGISTRY:
            return METRIC_REGISTRY[name]
        else:
            eval_logger.warning(
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
136

137
    try:
Baber's avatar
Baber committed
138
139
        import evaluate as hf_evaluate

Baber Abbasi's avatar
Baber Abbasi committed
140
        metric_object = hf_evaluate.load(name)
141
142
143
144
        return metric_object.compute
    except Exception:
        eval_logger.error(
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
145
146
147
        )


Baber Abbasi's avatar
Baber Abbasi committed
148
def register_aggregation(name: str):
149
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
150
151
152
        assert name not in AGGREGATION_REGISTRY, (
            f"aggregation named '{name}' conflicts with existing registered aggregation!"
        )
153
154
155
156
157
158
159

        AGGREGATION_REGISTRY[name] = fn
        return fn

    return decorate


Baber's avatar
Baber committed
160
def get_aggregation(name: str) -> Optional[Callable[[], Dict[str, Callable]]]:
161
162
163
    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
164
        eval_logger.warning(f"{name} not a registered aggregation metric!")
haileyschoelkopf's avatar
haileyschoelkopf committed
165
166


Baber's avatar
Baber committed
167
def get_metric_aggregation(name: str) -> Optional[Callable[[], Dict[str, Callable]]]:
168
169
170
    try:
        return METRIC_AGGREGATION_REGISTRY[name]
    except KeyError:
171
        eval_logger.warning(f"{name} metric is not assigned a default aggregation!")
172
173


Baber's avatar
cleanup  
Baber committed
174
def is_higher_better(metric_name: str) -> Optional[bool]:
haileyschoelkopf's avatar
haileyschoelkopf committed
175
176
177
    try:
        return HIGHER_IS_BETTER_REGISTRY[metric_name]
    except KeyError:
178
179
180
        eval_logger.warning(
            f"higher_is_better not specified for metric '{metric_name}'!"
        )
181
182


Baber's avatar
cleanup  
Baber committed
183
def register_filter(name: str):
184
185
186
187
188
189
190
191
192
193
194
    def decorate(cls):
        if name in FILTER_REGISTRY:
            eval_logger.info(
                f"Registering filter `{name}` that is already in Registry {FILTER_REGISTRY}"
            )
        FILTER_REGISTRY[name] = cls
        return cls

    return decorate


195
def get_filter(filter_name: Union[str, Callable]) -> Callable:
196
197
    try:
        return FILTER_REGISTRY[filter_name]
198
199
200
201
202
203
    except KeyError as e:
        if callable(filter_name):
            return filter_name
        else:
            eval_logger.warning(f"filter `{filter_name}` is not registered!")
            raise e