metrics.py 16.3 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
5
import re
import string
6
from collections.abc import Iterable
7
from typing import List
8
9
10
11

import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
12

13
from lm_eval.api.registry import register_aggregation, register_metric
14

lintangsutawika's avatar
lintangsutawika committed
15

16
eval_logger = logging.getLogger("lm-eval")
17

18

19
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
20
21
22
23
24
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


25
26
27
28
29
30
31
32
33
34
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


35
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
36
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
120
121
122
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
125
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
126
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
127
128
129
130
131
132
133
134
135
136
137
138
139
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


140
141
142
143
144
145
146
147
148
149
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


150
151
152
153
154
155
156
157
158
159
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


160
161
162
163
164
165
166
167
168
169
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
    predictions,
    references,
    regexes_to_ignore=None,
    ignore_case=False,
    ignore_punctuation=False,
    ignore_numbers=False,
):
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

    return {"exact_match": np.mean(score_list)}


###
224
225


226
227
228
229
230
231
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
232
def exact_match_fn(**kwargs):
233
    return exact_match_hf_evaluate(**kwargs)
234
235


236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
275

Leo Gao's avatar
Leo Gao committed
276
def pop_stddev(arr):
277
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
278
279
280
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
281
def sample_stddev(arr):
282
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
283
284
285
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
286
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
287
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
288
289


Baber Abbasi's avatar
Baber Abbasi committed
290
291
292
293
294
295
296
297
298
299
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
300
301
302
303
304
305
306
307
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
308
309
310


@register_metric(
311
    metric="f1",
312
313
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
314
    aggregation="f1",
315
)
316
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
317
    return items
318
319


320
321
322
@register_metric(
    metric="bleu",
    higher_is_better=True,
323
    output_type="generate_until",
324
325
326
327
328
329
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


330
331
332
@register_metric(
    metric="chrf",
    higher_is_better=True,
333
    output_type="generate_until",
334
335
336
337
338
339
340
341
342
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
343
    output_type="generate_until",
344
345
346
347
348
349
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
392
393
394
395
396
397
398
399
400
401

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
442
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
443
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
444
445
        self.f = f
        self.n = n
446

Leo Gao's avatar
Leo Gao committed
447
448
449
450
451
452
453
454
455
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
456

457
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
458
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
459

Leo Gao's avatar
Leo Gao committed
460
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
461
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
462
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
463
464
465
466
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
467
    res = []
468
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
469
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
470

Leo Gao's avatar
Leo Gao committed
471
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
472
473
    for bootstrap in tqdm(
        pool.imap(
474
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
475
476
477
478
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
479
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
480
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
481

Leo Gao's avatar
Leo Gao committed
482
    pool.close()
Leo Gao's avatar
Leo Gao committed
483
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
484
485


486
487
488
489
490
def stderr_for_metric(metric, bootstrap_iters: int):
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
507
508
509
510
511
512
513
514
515
516


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
517
518
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
519
520
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
521
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
522
523
    ) / (sum(sizes) - len(sizes))

524
    return np.sqrt(pooled_sample_var / sum(sizes))
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
563
    if not weight_by_size:
564
565
566
567
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Lintang Sutawika's avatar
Lintang Sutawika committed
568
    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)