race.py 4.17 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import collections
2
import datasets
Jon Tow's avatar
Jon Tow committed
3
4
5
6
import numpy as np
from lm_eval.base import rf, mean
from . common import HFTask
from ..utils_stream import each
Leo Gao's avatar
Leo Gao committed
7
8


9
class RACE(HFTask):
Leo Gao's avatar
Leo Gao committed
10
11
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
12
13

    cache = {}
Jon Tow's avatar
Jon Tow committed
14
    letter_to_num = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
Leo Gao's avatar
Leo Gao committed
15
16
17
18
19
20
21
22
23
24
25

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def _collate_data(self, set):
Leo Gao's avatar
Leo Gao committed
26
27
        if set in self.cache:
            return self.cache[set]
Leo Gao's avatar
Leo Gao committed
28
29
30
31
32
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
33
        for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
Leo Gao's avatar
Leo Gao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
            r[item['article']].append(item)
        
        res = list(r.values() >> each(lambda x: {
            'article': x[0]['article'],
            'problems': x >> each(lambda y: {
                'question': y['question'],
                'answer': y['answer'],
                'options': y['options'],
            })
        }))

        self.cache[set] = res
        return res

    def training_docs(self):
        return self._collate_data("train")

    def validation_docs(self):
        return self._collate_data("validation")

    def test_docs(self):
        return self._collate_data("test")

    def fewshot_description(self):
        # TODO: figure out description
        return ""

Jon Tow's avatar
Jon Tow committed
61
62
63
64
65
66
67
68
69
    @classmethod
    def get_answer_option(cls, problem):
        answer = cls.letter_to_num[problem['answer']]
        return problem['options'][answer]

    @classmethod
    def last_problem(cls, doc):
        return doc['problems'][-1]

70
    def doc_to_text(self, doc):
Jon Tow's avatar
Jon Tow committed
71
72
73
74
75
76
77
        text = 'Article: ' + doc['article'] + '\n\n'
        for problem in doc['problems'][:-1]:
            question = 'Q: ' + problem['question'] + '\n\n'
            answer = 'A: ' + self.get_answer_option(problem) + '\n\n'
            text += question + answer
        text += 'Q: ' + self.last_problem(doc)['question'] + '\n\n' + 'A:'
        return text
Leo Gao's avatar
Leo Gao committed
78

79
    def doc_to_target(self, doc):
Jon Tow's avatar
Jon Tow committed
80
        return " " + self.get_answer_option(self.last_problem(doc))
Leo Gao's avatar
Leo Gao committed
81

Leo Gao's avatar
Leo Gao committed
82
83
84
85
86
87
88
89
90
91
92
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
Jon Tow's avatar
Jon Tow committed
93
94
95
96
97
98
99
        problem = self.last_problem(doc)
        ll_choices = [
            rf.loglikelihood(ctx, " " + problem['options'][i])[0]
            for i in range(4)
        ]
        return ll_choices

Leo Gao's avatar
Leo Gao committed
100
101
102
103
104
105
106
107
108
109
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
Jon Tow's avatar
Jon Tow committed
110
111
112
113
114
        gold = self.letter_to_num[self.last_problem(doc)['answer']]
        pred = np.argmax(results)
        return {
            "acc": int(pred == gold)
        }
Leo Gao's avatar
Leo Gao committed
115
116
117
118
119
120
121

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
Jon Tow's avatar
Jon Tow committed
122
123
124
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
125
126
127
128
129
130
131

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
Jon Tow's avatar
Jon Tow committed
132
133
134
        return {
            "acc": True
        }