huggingface.py 57.4 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import torch
8
import torch.nn.functional as F
9
import transformers
Jeevan's avatar
Jeevan committed
10
11
12
13
14
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
15
from accelerate.utils import get_max_memory
16
from huggingface_hub import HfApi
17
18
19
20
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
21
22
23
24
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
25
26

from lm_eval import utils
baberabb's avatar
baberabb committed
27
from lm_eval.api.instance import Instance
28
from lm_eval.api.model import TemplateLM
29
from lm_eval.api.registry import register_model
30
31
32
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
33
    configure_pad_token,
34
35
36
37
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
38

39

40
eval_logger = utils.eval_logger
41

lintangsutawika's avatar
lintangsutawika committed
42

43
@register_model("hf-auto", "hf", "huggingface")
44
class HFLM(TemplateLM):
45
46
47
48
49
50
51
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

52
    AUTO_MODEL_CLASS = None
53
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
54

55
56
    def __init__(
        self,
57
        pretrained: Union[str, transformers.PreTrainedModel],
58
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
59
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
60
61
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
62
63
64
65
66
67
68
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
69
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
70
        logits_cache: bool = True,
71
72
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
73
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
74
75
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
76
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
77
        use_fast_tokenizer: Optional[bool] = True,
78
        add_bos_token: Optional[bool] = False,
79
        prefix_token_id: Optional[int] = None,
80
        # arguments used for splitting a model across GPUs naively.
81
82
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
83
84
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
85
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
86
        # PEFT, delta weights and quantization options
87
        peft: Optional[str] = None,
88
        delta: Optional[str] = None,
89
        autogptq: Optional[Union[bool, str]] = False,
90
        gptqmodel: Optional[bool] = False,
91
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
92
    ) -> None:
93
        super().__init__()
94
95
96
97
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
98
            )
99
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
100
101
102
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
103
            gpus = 0
104

105
        else:
106
107
108
109
110
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
111
112
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
113
114
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
115

116
117
118
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
119
            # using one process with no model parallelism
120
121
122
123
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
124
                    + [f"cuda:{i}" for i in range(gpus)]
125
                    + ["mps", "mps:0"]
126
                    + [f"npu:{i}" for i in range(gpus)]
127
                )
128
                if device and device in device_list:
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
145
            else:  # Parallelism managed by accelerate
146
147
148
149
150
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
151
152
153
154
155
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
156

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
157
            revision = str(revision)  # cast to string if not already one
158
159
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
160

161
            self._get_config(
162
163
164
165
166
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

167
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
168
169
170
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
171

172
173
174
175
176
177
178
179
180
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

181
182
183
184
185
186
187
188
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
189
                gpus=gpus,
190
191
192
193
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
194
                delta=delta,
195
                autogptq=autogptq,
196
                gptqmodel=gptqmodel,
197
                **kwargs,
198
199
            )

200
        # access self._model through self.model property outside this method
201
202
203
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
204

lintangsutawika's avatar
lintangsutawika committed
205
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
206
        self.logits_cache = logits_cache
207
        self.vocab_size = self.tokenizer.vocab_size
208
        # select (or create) a pad token to use
209
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
210

211
        self.add_bos_token = add_bos_token
212
        if "gemma" in getattr(self.config, "model_type", ""):
213
            self.add_bos_token = True
214
            eval_logger.info(
215
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
216
217
            )

218
        self._max_length = max_length
219
220
221
222
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
223
224
225
226
227
228
229
230
231
232
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
233

234
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
235
236
237
238
239
240
241
242
243
244
245
246
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
247
248
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
249
250
251
252
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
253
                        )
Nathan Habib's avatar
Nathan Habib committed
254
                    elif gpus > accelerator.num_processes:
255
256
257
258
259
260
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
261
262
263
264
265
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

266
                    self._device = torch.device(f"{accelerator.device}")
267
                    self.accelerator = accelerator
268

269
270
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
271
272
273
274
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
275
276
277
278
279
280
281
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
282

283
        self.custom_prefix_token_id = prefix_token_id
284
285
286
287
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
288

Nathan Habib's avatar
Nathan Habib committed
289
290
    def _get_accelerate_args(
        self,
291
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
338
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
339
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
340
                else:
Nathan Habib's avatar
Nathan Habib committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
            args["device_map"] = "auto"
            eval_logger.info(
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to 'auto'"
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

377
378
379
380
381
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

382
383
384
385
386
387
388
389
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

390
391
392
393
394
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

395
396
397
398
399
400
401
402
403
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

404
405
    @property
    def max_length(self):
406
407
408
409
410
411
412
413
414
415
416
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
417

418
    @property
Ethan Smith's avatar
Ethan Smith committed
419
    def max_gen_toks(self) -> int:
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
438
439
440
441
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

442
443
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
444
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
445
        backend: Literal["default", "causal", "seq2seq"] = "default",
446
447
448
449
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
450
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
451
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
452
453
454

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
455
        """
456

457
458
459
460
461
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
462
                self.backend = backend
463
            elif backend == "seq2seq":
464
                self.backend = backend
465
466
467
468
469
470
471
472
473
474
475
476
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
477
478
                self.backend = "seq2seq"
                eval_logger.info(f"Using model type '{backend}'")
479
480
481
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
482
483
                self.backend = "causal"
                eval_logger.info(f"Using model type '{backend}'")
484
485
486
487
488
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
489
                        "Setting backend to causal"
490
491
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
492
493
494
495
496
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
                    f"Model type cannot be determined. Using default model type '{backend}'"
                )
497

498
499
500
501
502
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
503
504
505
506
507
508
509

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
510
        """Return the model config for HuggingFace models"""
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
527
        gpus: Optional[int] = None,
528
529
530
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
531
        # PEFT, delta weights and quantization options
532
        peft: Optional[str] = None,
533
        delta: Optional[str] = None,
534
        autogptq: Optional[Union[bool, str]] = False,
535
        gptqmodel: Optional[bool] = False,
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
552
553
554
555
556
557
558
559
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
560
            )
Nathan Habib's avatar
Nathan Habib committed
561
        )
562

563
        if not autogptq and not gptqmodel:
564
565
566
567
568
569
570
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
571
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
572
573
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
574

575
576
577
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
578
                torch_dtype=get_dtype(dtype),
579
580
581
582
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
583
584
585
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
586
587
                )

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
619

620
621
622
623
624
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

625
626
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
627
628
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
629
630
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
631
632
633
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
634
                self._model.resize_token_embeddings(len(self.tokenizer))
635
636
637
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
713
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
714
715
716
717
718
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
719
720
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
721
722
        else:
            max_length = self.max_length
723
724
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
725

Benjamin Fattori's avatar
Benjamin Fattori committed
726
727
728
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
729
            if self.backend == "seq2seq":
730
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
731
732
733
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
734
735
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
736
737
738
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
739
740
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
741
742
743
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
744
            for _ in range(5):
745
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
746

Benjamin Fattori's avatar
Benjamin Fattori committed
747
748
            return batch_size

749
750
751
752
753
754
755
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
756

757
758
759
760
761
762
763
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
764
            clear_torch_cache()
765
766
            return batch_size

767
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
768
769
        return batch_size

baberabb's avatar
baberabb committed
770
771
772
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
773
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
774
775
776
777
778
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
779
        if add_special_tokens is None:
780
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
781
782
783
784
785
786
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
787

Lintang Sutawika's avatar
Lintang Sutawika committed
788
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
789

790
791
792
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
793

794
795
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
796
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
797
798
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
799
        padding_side: str = "left",
800
801
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
802
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
803
804
805
806
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
807
        add_special_tokens = {}
808
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
809
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
810
811
812

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
813
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
814
815
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
816
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
817
818
819
820
821
822
823
824
825
826
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
827
828
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
829
830
831

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
832
        :param inps: torch.Tensor
833
834
835
836
837
838
839
840
841
842
843
844
845
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
846
847
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
848
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
849
850
851
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
852
853
854
855
856
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
857
        # temperature = 0.0 if not set
858
859
860
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
861
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
862
        do_sample = generation_kwargs.get("do_sample", None)
863
864
865
866
867

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
868
869
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
870
871
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
872
            self.tokenizer, stop, context.shape[1], context.shape[0]
873
        )
874
        return self.model.generate(
875
            input_ids=context,
876
877
            max_length=max_length,
            stopping_criteria=stopping_criteria,
878
            pad_token_id=self.tokenizer.pad_token_id,
879
880
881
            use_cache=True,
            **generation_kwargs,
        )
882

Baber Abbasi's avatar
Baber Abbasi committed
883
884
885
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
886
        if self.backend == "causal":
haileyschoelkopf's avatar
haileyschoelkopf committed
887
888
889
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
890
891
892
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
893
        elif self.backend == "seq2seq":
haileyschoelkopf's avatar
haileyschoelkopf committed
894
895
896
897
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
898
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
899
900
            logits = logits[:contlen]

901
902
        return logits

903
904
905
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
906
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
907
908
909
910
911
912
913
914
915

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

916
917
918
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
919
920
921
922
923
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
924
                        prefix_token=self.prefix_token_id,
925
926
927
928
929
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
930
931

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
947
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
948
949
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
950
951
952
953
954
955
956
957
958
959
960
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

961
962
963
            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)

964
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
965

966
967
968
969
970
971
972
973
974
975
976
977
978
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
979
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
980
981
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
982

Ethan Smith's avatar
Ethan Smith committed
983
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
984
985
986
987
988
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
989
990
991
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
992
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
993
            """Defines the key for the sorted method"""
994
995
996
997
998
999
1000
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1001
            toks = req[1] + req[2]
1002
1003
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1004
1005
1006
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1007
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1008
1009
1010
1011
1012
1013
1014
1015
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1016
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1017
1018
1019
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1020
1021
1022

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1023
1024
1025
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1026
1027
1028
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1029
1030
1031
1032
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1033
1034
1035
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1036
            else None
1037
1038
        )

Baber Abbasi's avatar
Baber Abbasi committed
1039
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1040
1041
1042
1043
1044
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1045
        for chunk in chunks:
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1065
                # how this all works (illustrated on a causal decoder-only setup):
1066
1067
1068
1069
1070
1071
1072
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1073
                if self.backend == "causal":
1074
1075
1076
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1077
1078
                        device=self.device,
                    )
1079
                    (inplen,) = inp.shape
1080
                elif self.backend == "seq2seq":
1081
1082
1083
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1084
                        device=self.device,
1085
                    )
1086
                    (inplen,) = inp.shape
1087
1088
1089
1090

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1091
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1092
                        (continuation_enc)[-self.max_length :],
1093
1094
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1095
                        dtype=torch.long,
1096
1097
                        device=self.device,
                    )
1098
1099
                    (contlen,) = cont.shape

1100
1101
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1102
1103
1104
1105
1106
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1107

haileyschoelkopf's avatar
haileyschoelkopf committed
1108
1109
1110
1111
1112
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1113
1114
1115
1116

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1117

1118
1119
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1120
            if self.backend == "causal":
1121
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1122
1123
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1124
            elif self.backend == "seq2seq":
1125
                # TODO: left-pad encoder inps and mask?
1126
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1127
1128
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1129
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
1131
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1132
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1133
1134
1135
1136
1137
1138
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1139
1140
1141

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1142
            )  # [batch, padding_length (inp or cont), vocab]
1143

Baber Abbasi's avatar
Baber Abbasi committed
1144
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1145
1146
1147
1148
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1149
                # take only logits in the continuation
1150
                # (discard context toks if decoder-only ; discard right-padding)
1151
1152
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1153
                ctx_len = (
1154
                    inplen + (logits.shape[0] - padding_len_inp)
1155
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1156
1157
                    else None
                )
1158
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1159
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1160
1161
1162
1163

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1191
1192
1193
1194
1195
1196
1197
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1198
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1199
1200

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1201

1202
1203
        return re_ord.get_original(res)

1204
1205
1206
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1207
        res = []
1208

Baber Abbasi's avatar
Baber Abbasi committed
1209
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1210
            """Defines the key for the sorted method"""
1211
1212
1213
1214
1215
1216
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1217
1218
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1219

1220
1221
        pbar = tqdm(
            total=len(requests),
1222
            disable=(disable_tqdm or (self.rank != 0)),
1223
1224
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1225
        adaptive_batch_size = None
1226
1227
1228
1229
1230
1231
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1232
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1245

Baber Abbasi's avatar
Baber Abbasi committed
1246
1247
1248
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1249
1250
1251
1252
1253
1254
1255
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1269
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1270
1271
1272
1273
1274
1275
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1276
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1277
                )
1278
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1279
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1280
            if not until:
1281
1282
1283
                until = [eos]
            else:
                until.append(eos)
Baber Abbasi's avatar
Baber Abbasi committed
1284
1285
1286
1287
1288
1289
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1290
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1291
1292
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
1293
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1305

Baber Abbasi's avatar
Baber Abbasi committed
1306
1307
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1308

Baber Abbasi's avatar
Baber Abbasi committed
1309
1310
1311
1312
1313
1314
1315
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1316

Baber Abbasi's avatar
Baber Abbasi committed
1317
1318
1319
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1320
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1321
                    cont_toks = cont_toks[context_enc.shape[1] :]
1322

Baber Abbasi's avatar
Baber Abbasi committed
1323
                s = self.tok_decode(cont_toks)
1324

Baber Abbasi's avatar
Baber Abbasi committed
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1338

1339
        pbar.close()
1340

Baber Abbasi's avatar
Baber Abbasi committed
1341
        return res
1342

KonradSzafer's avatar
KonradSzafer committed
1343
1344
1345
1346
1347
1348
1349
1350
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
        return self.tokenizer.apply_chat_template(
            chat_history, tokenize=False, add_generation_prompt=True
        )

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info