base.py 10 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import abc
import random
thefazzer's avatar
thefazzer committed
3
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
4
import sklearn
Leo Gao's avatar
Leo Gao committed
5
import math
Jason Phang's avatar
gpt3  
Jason Phang committed
6

Jason Phang's avatar
Jason Phang committed
7

Leo Gao's avatar
Leo Gao committed
8
9
class LM(abc.ABC):
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
10
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
11
12
13
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
14

Leo Gao's avatar
Leo Gao committed
15
16
17
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Leo Gao's avatar
Leo Gao committed
18
19
                Context string. Implementations of LM must be able to handle an 
                empty context string.
Leo Gao's avatar
Leo Gao committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `contination`
            isgreedy:
                Whether `contination` would be generated by greedy sampling from `context`
        """
        pass

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
34
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
35
36
37
38
39
40
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
41
42
43
            until: [str]
                The string sequences to generate until. These string sequences 
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
44
45
46
47
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
48
        """
Leo Gao's avatar
Leo Gao committed
49
50
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
51
52
53
54
55
56
57
58
59
60
61
    @classmethod
    def create_from_arg_string(cls, arg_string):
        """Constructor method, in case models need additional arguments
        e.g. OpenAI API engine, paths for loading, other params

        :param arg_string: str
            Left up to individual model class to handle

        """
        return cls()

Leo Gao's avatar
Leo Gao committed
62

63
class Task(abc.ABC):
Leo Gao's avatar
Leo Gao committed
64
65
    def __init__(self):
        self.download()
66
        self._training_docs = None
sdtblck's avatar
sdtblck committed
67
68
69
70
71

    def download(self):
        """Downloads the task dataset if necessary"""
        pass

72
73
    @abc.abstractmethod
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
74
        """Whether the task has a training set"""
75
        pass
76

77
78
    @abc.abstractmethod
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
79
80
81
82
83
84
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
85
86
        pass

Leo Gao's avatar
Leo Gao committed
87
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
88
89
90
91
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
92
        return []
93

Leo Gao's avatar
Leo Gao committed
94
    def validation_docs(self):
95
96
97
98
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
99
        return []
100

Leo Gao's avatar
Leo Gao committed
101
    def test_docs(self):
102
103
104
105
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
106
        return []
Leo Gao's avatar
Leo Gao committed
107

108
    def fewshot_examples(self, k):
109
110
111
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
        return random.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
112
113

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
114
115
116
117
118
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
119
        pass
Leo Gao's avatar
Leo Gao committed
120
121

    @abc.abstractmethod
122
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
123
124
125
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

126
127
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
128
        :param ctx: str
129
130
131
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
Leo Gao's avatar
Leo Gao committed
132
        """
Leo Gao's avatar
Leo Gao committed
133
        pass
134

Leo Gao's avatar
Leo Gao committed
135
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
136
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
137
        """Take a single document and the LM results and evaluates, returning a 
138
139
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
140
141
142
143
144

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
145
        """
Leo Gao's avatar
Leo Gao committed
146
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
166
    def fewshot_description(self):
Jason Phang's avatar
checkin  
Jason Phang committed
167
168
        return ""

Jason Phang's avatar
Jason Phang committed
169
    def fewshot_context(self, doc, num_fewshot, provide_description):
Jason Phang's avatar
Jason Phang committed
170
        raw_description = self.fewshot_description()
Jason Phang's avatar
Jason Phang committed
171
        description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
172

173
174
175
176
177
178
        if num_fewshot == 0:
            labeled_examples = ""
        else:
            labeled_examples = "\n\n".join(
                [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in self.fewshot_examples(k=num_fewshot)]
            ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
179

180
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
181
182
183
        return description + labeled_examples + example


Leo Gao's avatar
Leo Gao committed
184
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
185
186
187
    def doc_to_target(self, doc):
        return " " + doc['choices'][doc['gold']]

Leo Gao's avatar
Leo Gao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def construct_requests(self, doc, ctx):
        lls = [
            rf.loglikelihood(ctx, " {}".format(choice))[0]
            for choice in doc['choices']
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

        acc = 1. if np.argmax(results) == gold else 0.

        return {
            "acc": acc
        }
    
    def higher_is_better(self):
        return {
            "acc": True
        }
    
    def aggregation(self):
        return {
            "acc": mean
        }


Leo Gao's avatar
Leo Gao committed
216
217
218
def mean(arr):
    return sum(arr) / len(arr)

Jason Phang's avatar
Jason Phang committed
219

Jonathan Tow's avatar
Jonathan Tow committed
220
221
222
def median(arr):
    return arr[len(arr) // 2]

Jason Phang's avatar
Jason Phang committed
223

Jonathan Tow's avatar
Jonathan Tow committed
224
225
226
227
228
229
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)

Jason Phang's avatar
Jason Phang committed
230

thefazzer's avatar
thefazzer committed
231
232
233
234
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
Jonathan Tow's avatar
Jonathan Tow committed
235
    fscore = sklearn.metrics.f1_score(golds, preds)
Leo Gao's avatar
Leo Gao committed
236
237

    return np.max(fscore)
thefazzer's avatar
thefazzer committed
238

Jason Phang's avatar
Jason Phang committed
239

thefazzer's avatar
thefazzer committed
240
241
242
243
244
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]
Jason Phang's avatar
Jason Phang committed
245
246

    for doc, pred in zip(docs, preds):
thefazzer's avatar
thefazzer committed
247
248
249
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []
250
251
252

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)
thefazzer's avatar
thefazzer committed
253
254
255
256
            
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Jason Phang's avatar
Jason Phang committed
257
258
259
260
261
262
263
264
265
266

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


Leo Gao's avatar
Leo Gao committed
267
268
269
def perplexity(items):
    return math.exp(-mean(items))

270
req_ret_lens = {
Leo Gao's avatar
Leo Gao committed
271
    'loglikelihood': 2,
272
273
}

Leo Gao's avatar
Leo Gao committed
274
275
276
277
278
import os
import json
import hashlib
from sqlitedict import SqliteDict

Leo Gao's avatar
Leo Gao committed
279
280
281
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
    return hashlib.sha256(dat.encode('utf-8')).hexdigest()
Leo Gao's avatar
Leo Gao committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


class CachingLM:
    def __init__(self, lm, cache_db):
        self.lm = lm
        self.cache_db = cache_db
        os.makedirs(os.path.dirname(cache_db), exist_ok=True)
        self.dbdict = SqliteDict(cache_db, autocommit=True)

    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
            
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
298
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
            
            # actually run the LM
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
                while res[resptr] is not None: resptr += 1

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
320
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
321
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
322
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
323
324
325
326

            return res
        return fn

Jason Phang's avatar
Jason Phang committed
327

328
329
330
331
class Request:
    def __init__(self, type, args, index=None):
        if type not in req_ret_lens.keys():
            raise NotImplementedError('The request type {} is not implemented!'.format(type))
Leo Gao's avatar
Leo Gao committed
332

333
334
335
336
337
338
339
340
341
342
343
        self.type = type
        self.args = args
        self.index = index
    
    def __iter__(self):
        i = 0
        for i in range(req_ret_lens[self.type]):
            yield Request(self.type, self.args, i)
    
    def __getitem__(self, i):
        return Request(self.type, self.args, i)
Leo Gao's avatar
Leo Gao committed
344
345
346
    
    def __eq__(self, other):
        return self.type == other.type and self.args == other.args and self.index == other.index
Leo Gao's avatar
Leo Gao committed
347

Jason Phang's avatar
Jason Phang committed
348

Leo Gao's avatar
Leo Gao committed
349
350
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
351
352
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
353
354
355
356
        return fn


rf = RequestFactory()