metrics.py 7.32 KB
Newer Older
&'s avatar
& committed
1
import math
&'s avatar
& committed
2
from collections import Iterable
&'s avatar
& committed
3
from pprint import pprint
&'s avatar
& committed
4
5
6
7

import numpy as np
import sacrebleu
import sklearn
Leo Gao's avatar
Leo Gao committed
8
import random
&'s avatar
& committed
9
10
11
12
13
14


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
15
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
16
17
18
19
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
20
21
22
23
24
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
25
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
26
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
27
28


&'s avatar
& committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
97
98
99
100
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

Leo Gao's avatar
Leo Gao committed
101
102
103
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Leo Gao's avatar
Leo Gao committed
104

&'s avatar
& committed
105
106
107
108
109
110
111
112
113
114
115
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
116
117
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
118
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
119
120
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
121
122
123
124
125
126
127
128
129

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
130
131
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
132
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
133
134
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
135
136
137
138
139
140
141
142
143
144

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
145
146
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
147
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
148
149
150
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
151
152
153
154
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
155
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
156
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
157
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
158
159
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
160
161
162
163
164
165
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
166
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
167
        refs = list(refs)
&'s avatar
& committed
168
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
169
        refs = [[ref] for ref in refs]
&'s avatar
& committed
170
171
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
172

&'s avatar
& committed
173
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
174
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
175
        preds = list(preds)
&'s avatar
& committed
176
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
177
178
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
179
180

    return refs, preds
Leo Gao's avatar
Leo Gao committed
181
182
183

## stderr stuff

Leo Gao's avatar
Leo Gao committed
184
185
186
187
188
189
190
191
192
193
194
195
196
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
197

198
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
199
200
    import multiprocessing as mp
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
201
202
203
204
205
206
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
207
    res = []
208
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
209
    from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
210
    print("bootstrapping for stddev:", f.__name__)
211
    for bootstrap in tqdm(pool.imap(_bootstrap_internal(f, chunk_size), [(i, xs) for i in range(iters // chunk_size)]), total=iters // chunk_size):
Leo Gao's avatar
Leo Gao committed
212
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
213
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
214

Leo Gao's avatar
Leo Gao committed
215
    pool.close()
Leo Gao's avatar
Leo Gao committed
216
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
217
218


219
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
220
221
222
223
224
225
226
227
228
229
230
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
231
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
232
233
234
235
236
237
238

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
239
    return stderr.get(metric, None)