huggingface.py 49.8 KB
Newer Older
1
import copy
2
import os
3
4
5
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union

6
import torch
7
import torch.nn.functional as F
8
import transformers
9
10
11
12
13
from accelerate import Accelerator, DistributedType, find_executable_batch_size
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
14
15
16
17
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
18
19

from lm_eval import utils
baberabb's avatar
baberabb committed
20
from lm_eval.api.instance import Instance
21
22
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
Baber Abbasi's avatar
Baber Abbasi committed
23
from lm_eval.utils import Collator, stop_sequences_criteria
24

25

26
eval_logger = utils.eval_logger
27

lintangsutawika's avatar
lintangsutawika committed
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
52
53


54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(LM):
56
57
58
59
60
61
62
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

63
    AUTO_MODEL_CLASS = None
64
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
65

66
67
    def __init__(
        self,
68
69
70
71
        pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
        backend: Optional[
            Literal["default", "causal", "seq2seq"]
        ] = "default",  # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
72
73
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
74
75
76
77
78
79
80
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
81
        truncation: Optional[bool] = False,
82
83
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
84
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
85
86
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
87
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
88
        use_fast_tokenizer: Optional[bool] = True,
89
        # arguments used for splitting a model across GPUs naively.
90
91
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
92
93
94
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
95
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
96
97
        # PEFT and quantization options
        peft: Optional[str] = None,
98
        autogptq: Optional[Union[bool, str]] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
99
100
101
102
        # Chat templating settings
        use_chat_template: Optional[bool] = False,
        # TODO: validate a template exists in tokenizer config, if this flag is true
        system_prompt: Optional[str] = None,
103
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
104
    ) -> None:
105
106
        super().__init__()

107
108
109
110
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
111
            )
112
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
113
114
115
116
117
118
119
120
121
122
            self._model = pretrained
            self._device = self._model.device

            self._config = self._model.config

            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
123
            else:
124
125
126
127
128
129
130
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
131
                )
132

133
        else:
134
135
136
137
138
139
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
            accelerator = Accelerator()
140
141
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
142
143
144
145
146
147
148

            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
                    + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
                    + ["mps", "mps:0"]
149
                )
150
                if device and device in device_list:
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
            else:
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
173
                self._device = torch.device(device)
174

175
176
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
177

178
            self._get_config(
179
180
181
182
183
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

184
185
186
187
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
                device_map_option=device_map_option,
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
                autogptq=autogptq,
                **kwargs,
204
205
            )

206
        # access self._model through self.model property outside this method
207
        self.model.eval()
208
        self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
209

210
        if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
211
212
            # TODO: can remove this whole snippet except in the mps case, perhaps?
            if not (parallelize or autogptq or hasattr(self, "accelerator")):
213
214
215
216
217
218
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
219
220
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
221
222
223
224
225
                    )

        self._create_tokenizer(
            pretrained,
            tokenizer,
226
            revision=revision,
227
            trust_remote_code=trust_remote_code,
228
            use_fast_tokenizer=use_fast_tokenizer,
229
230
        )

lintangsutawika's avatar
lintangsutawika committed
231
232
        self.truncation = truncation

233
        self.vocab_size = self.tokenizer.vocab_size
234
235
236
237
238
239
240
241
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
242
            if self.config.model_type == "qwen":
243
244
245
246
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
247

haileyschoelkopf's avatar
haileyschoelkopf committed
248
249
250
        self.system_prompt = system_prompt
        self.use_chat_template = use_chat_template

251
252
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
253
254
255
256
257
258
259
260
261
262
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
278
                else:
279
280
281
282
283
284
285
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
286
287
288
289
290
291
292
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
293
294
295
296
297
298
299
300
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
                    self._device = torch.device(
                        f"cuda:{accelerator.local_process_index}"
301
                    )
302
                    self.accelerator = accelerator
303

304
305
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
306

307
308
309
310
311
312
313
314
315
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
316

317
318
319
320
321
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

322
323
324
325
326
327
328
329
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

330
331
332
333
334
335
336
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
337
338
339
340
341
342
343
344
345
346
347
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
348

349
    @property
Ethan Smith's avatar
Ethan Smith committed
350
    def max_gen_toks(self) -> int:
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def _get_backend(
        self,
        config: transformers.AutoConfig,
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        # PEFT and quantization options
        peft: Optional[str] = None,
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
469
                    device_map_option,  # TODO: phase out device_map_option?
470
471
472
473
474
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
                )
            )
475
476
477
478
479
480
481
482
483
484
485
486
        elif "device_map" not in model_kwargs:
            # set a device_map to initialize model on the right GPU.
            # this is needed because it seems that the default behavior
            # for quantized models now seems to be device_map="auto"
            # which breaks data-parallel mode.
            if hasattr(self, "accelerator"):
                model_kwargs.update(
                    {"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}}
                )
            else:
                model_kwargs.update({"device_map": {"": str(self.device)}})

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

        if peft:
            if model_kwargs.get("load_in_4bit", None):
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
582
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
583
584
585
586
587
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
588
589
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
590
591
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
592

Benjamin Fattori's avatar
Benjamin Fattori committed
593
594
595
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
596
597
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
598
599
600
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
601
602
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
603
604
605
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
606
607
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
608
609
610
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
611
            for _ in range(5):
612
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
613
614
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
615
616
617
618
            return batch_size

        batch_size = forward_batch()

619
620
621
622
623
624
625
626
627
628
629
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
630
631
        return batch_size

baberabb's avatar
baberabb committed
632
633
634
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
635
        """ """
636
637
638
639
640
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
641
642

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
643

644
645
646
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
647

648
649
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
650
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
651
652
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
653
        padding_side: str = "left",
654
655
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
656
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
657
658
659
660
661
662
663
664
665
666
667
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
668
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
669
670
671
672
673
674
675
676
677
678
679
680
681
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

682
683
684
685
686
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)
687
688
689
690

    def wrap_chat_template(
        self, requests: List[Instance], generate=False
    ) -> List[Instance]:
691
692
        """
        Utility for adding chat templates via the apply_chat_template() method
daniel-furman's avatar
daniel-furman committed
693
        """
694
695
        # TODO: handle repeats > 1 case?
        # TODO: raise an error if system prompt not compatible with template
daniel-furman's avatar
daniel-furman committed
696
697
        new_reqs = []
        for req in requests:
698
            context, continuation = req.args[0].strip(), req.args[1]
daniel-furman's avatar
daniel-furman committed
699
            chat = []
700
            if self.system_prompt is not None:
701
                chat += [{"role": "system", "content": self.system_prompt}]
702

haileyschoelkopf's avatar
haileyschoelkopf committed
703
704
705
            chat += [
                {"role": "user", "content": context},
            ]
706
707
708
            # TODO: expose settings for chat formatting:
            # - whether some "trigger" / start of assistant response might be placed in assistant's generation for it
            # - if few-shot, should the fewshots be placed in separate convo turns? provided in user's single turn?...
daniel-furman's avatar
daniel-furman committed
709
            context = self.tokenizer.apply_chat_template(
710
                chat,
daniel-furman's avatar
daniel-furman committed
711
712
713
                tokenize=False,
                add_generation_prompt=True,
            )
714
            req.args = (context, continuation)
daniel-furman's avatar
daniel-furman committed
715
716
717
            new_reqs.append(req)
        return new_reqs

718
719
    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
720
        :param inps: torch.Tensor
721
722
723
724
725
726
727
728
729
730
731
732
733
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
734
735
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
736
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
737
738
739
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
740
741
742
743
744
745
746
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
747
        if "do_sample" not in generation_kwargs:
748
749
750
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
751
            self.tokenizer, stop, context.shape[1], context.shape[0]
752
        )
753
        return self.model.generate(
754
            input_ids=context,
755
756
            max_length=max_length,
            stopping_criteria=stopping_criteria,
757
            pad_token_id=self.tokenizer.pad_token_id,
758
759
760
            use_cache=True,
            **generation_kwargs,
        )
761
762
763

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
764
765
766
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
767
768
769
770
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
771
772
773
774
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
775
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
776
777
            logits = logits[:contlen]

778
779
        return logits

baberabb's avatar
baberabb committed
780
781
782
    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
783
784
785
786
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
787
788
789
790
791
792

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
793
794
795
796
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

baberabb's avatar
baberabb committed
797
    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
haileyschoelkopf's avatar
haileyschoelkopf committed
798
799
800
801
        if self.use_chat_template:
            print(f"First element before prompt formatting...\n{requests[0].args}")
            requests = self.wrap_chat_template(requests)
            print(f"First element after prompt formatting...\n{requests[0].args}")
802

803
804
805
806
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
807
808
809
                context_enc, continuation_enc = (
                    [self.eot_token_id],
                    self.tok_encode(continuation),
810
                )
811
            else:
812
                context_enc, continuation_enc = self._encode_pair(context, continuation)
813
814
815
816
817

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

baberabb's avatar
baberabb committed
818
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
819
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
820

821
822
        # TODO: add a warning that chat templates are ignored for ppl evals

Benjamin Fattori's avatar
Benjamin Fattori committed
823
824
825
826
827
828
829
830
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

831
832
833
834
835
836
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
837
                        prefix_token=self.eot_token_id,
838
839
840
841
842
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
843
844

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
860
861
862
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
863
864
865
866
867
868
869
870
871
872
873
874
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
875

876
877
878
879
880
881
882
883
884
885
886
887
888
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
889
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
890
891
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
892

Ethan Smith's avatar
Ethan Smith committed
893
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
894
895
896
897
898
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
899
900
901
        res = []

        def _collate(x):
Baber Abbasi's avatar
Baber Abbasi committed
902
            """Defines the key for the sorted method"""
903
904
905
906
907
908
909
910
911
912
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
913
        re_ord = Collator(requests, sort_fn=_collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
914
915
916

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
917
918
919
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
920
921
922
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
923
924
925
926
            else 0
        )
        batch_fn = (
            self._batch_scheduler
927
928
929
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
930
            else None
931
932
        )

Baber Abbasi's avatar
Baber Abbasi committed
933
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
haileyschoelkopf's avatar
haileyschoelkopf committed
934
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
935
        for chunk in chunks:
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
955
                # how this all works (illustrated on a causal decoder-only setup):
956
957
958
959
960
961
962
963
964
965
966
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
967
968
                        device=self.device,
                    )
969
970
971
972
973
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
974
                        device=self.device,
975
                    )
976
                    (inplen,) = inp.shape
977
978
979
980

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

981
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
982
                        (continuation_enc)[-self.max_length :],
983
984
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
985
                        dtype=torch.long,
986
987
                        device=self.device,
                    )
988
989
                    (contlen,) = cont.shape

990
991
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
992
993
994
995
996
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
997

haileyschoelkopf's avatar
haileyschoelkopf committed
998
999
1000
1001
1002
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1003
1004
1005
1006

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1007

1008
1009
1010
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
1011
1012
1013
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1014
1015
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1029
1030
1031

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1032
            )  # [batch, padding_length (inp or cont), vocab]
1033
1034
1035
1036
1037
1038

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1039
                # take only logits in the continuation
1040
                # (discard context toks if decoder-only ; discard right-padding)
1041
1042
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1043
                ctx_len = (
1044
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1045
1046
1047
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1048
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1049
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1050
1051
1052

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
1053
1054
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
1055
                ).unsqueeze(0)  # [1, seq]
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
1069
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
1070
1071
1072
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1073

1074
1075
        return re_ord.get_original(res)

baberabb's avatar
baberabb committed
1076
    def generate_until(self, requests: List[Instance]) -> List[str]:
haileyschoelkopf's avatar
haileyschoelkopf committed
1077
1078
        if self.use_chat_template:
            print(f"First element before prompt formatting...\n{requests[0].args}")
1079
            requests = self.wrap_chat_template(requests)
haileyschoelkopf's avatar
haileyschoelkopf committed
1080
            print(f"First element after prompt formatting...\n{requests[0].args}")
1081

Baber Abbasi's avatar
Baber Abbasi committed
1082
        res = []
1083
1084

        def _collate(x):
Baber Abbasi's avatar
Baber Abbasi committed
1085
            """Defines the key for the sorted method"""
1086
1087
1088
1089
1090
1091
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
1092
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
1093
            return -len(toks), x[0]
1094

1095
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
1096
1097
1098
1099
1100
1101
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1102
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1115

Baber Abbasi's avatar
Baber Abbasi committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [kwargs]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {kwargs}"
1141
                )
Baber Abbasi's avatar
Baber Abbasi committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            if not until:
                until = [self.tok_decode(self.eot_token_id)]
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1165

Baber Abbasi's avatar
Baber Abbasi committed
1166
1167
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1168

Baber Abbasi's avatar
Baber Abbasi committed
1169
1170
1171
1172
1173
1174
1175
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1176

Baber Abbasi's avatar
Baber Abbasi committed
1177
1178
1179
1180
1181
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1182

Baber Abbasi's avatar
Baber Abbasi committed
1183
                s = self.tok_decode(cont_toks)
1184

Baber Abbasi's avatar
Baber Abbasi committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1198

1199
        pbar.close()
1200

Baber Abbasi's avatar
Baber Abbasi committed
1201
        return res