metrics.py 16.7 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
5
import re
import string
6
from collections.abc import Iterable
7
from typing import List
8
9

import numpy as np
&'s avatar
& committed
10

11
from lm_eval.api.registry import register_aggregation, register_metric
12

lintangsutawika's avatar
lintangsutawika committed
13

Lintang Sutawika's avatar
Lintang Sutawika committed
14
eval_logger = logging.getLogger(__name__)
15

16

17
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
18
19
20
21
22
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


23
@register_aggregation("nanmean")
Baber's avatar
Baber committed
24
def nanmean(arr: list[float]) -> float:
25
26
27
28
29
    if len(arr) == 0 or all(np.isnan(arr)):
        return np.nan
    return np.nanmean(arr)


30
@register_aggregation("mean")
Baber's avatar
Baber committed
31
def mean(arr: list[float]) -> float:
32
33
34
35
    return sum(arr) / len(arr)


@register_aggregation("median")
Baber's avatar
Baber committed
36
def median(arr: list[float]) -> float:
37
38
39
    return arr[len(arr) // 2]


40
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
41
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
42
@register_aggregation("perplexity")
Baber's avatar
Baber committed
43
def perplexity(items: list[float]) -> float:
44
45
46
47
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
Baber's avatar
Baber committed
48
def weighted_perplexity(items: list[tuple[float, float]]) -> float:
49
50
51
52
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
Baber's avatar
Baber committed
53
def bits_per_byte(items: list[tuple[float, float]]) -> float:
54
55
56
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
57
58
@register_aggregation("f1")
def f1_score(items):
59
60
    from sklearn.metrics import f1_score

haileyschoelkopf's avatar
haileyschoelkopf committed
61
62
63
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
64
    fscore = f1_score(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
65
66
67
68
69
70

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
71
72
    from sklearn.metrics import matthews_corrcoef

haileyschoelkopf's avatar
haileyschoelkopf committed
73
74
75
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
76
    return matthews_corrcoef(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
77
78


79
80
81
82
83
84
85
86
87
88
89
90
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
Baber's avatar
Baber committed
91
92
    import sacrebleu

93
94
95
96
97
98
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


99
100
101
102
103
104
105
106
107
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
Baber's avatar
Baber committed
108
109
    import sacrebleu

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
Baber's avatar
Baber committed
126
127
    import sacrebleu

128
129
130
131
132
133
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
136
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
137
138
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
139
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
140
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
141
142
143
144
145
146
147
148
149
150
151
152
153
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


154
155
156
157
158
159
160
161
162
163
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


164
165
166
167
168
169
170
171
172
173
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


174
175
176
177
178
179
180
181
182
183
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
    predictions,
    references,
    regexes_to_ignore=None,
    ignore_case=False,
    ignore_punctuation=False,
    ignore_numbers=False,
):
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

    return {"exact_match": np.mean(score_list)}


###
238
239


240
241
242
243
244
245
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
246
def exact_match_fn(**kwargs):
247
    return exact_match_hf_evaluate(**kwargs)
248
249


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
289

Leo Gao's avatar
Leo Gao committed
290
def pop_stddev(arr):
291
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
292
293
294
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
295
def sample_stddev(arr):
296
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
297
298
299
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
300
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
301
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
302
303


Baber Abbasi's avatar
Baber Abbasi committed
304
305
306
307
308
309
310
311
312
313
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
314
315
316
317
318
319
320
321
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
322
323
324


@register_metric(
325
    metric="f1",
326
327
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
328
    aggregation="f1",
329
)
330
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
331
    return items
332
333


334
335
336
@register_metric(
    metric="bleu",
    higher_is_better=True,
337
    output_type="generate_until",
338
339
340
341
342
343
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


344
345
346
@register_metric(
    metric="chrf",
    higher_is_better=True,
347
    output_type="generate_until",
348
349
350
351
352
353
354
355
356
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
357
    output_type="generate_until",
358
359
360
361
362
363
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
406
407
408
409
410
411
412
413
414
415

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


Baber's avatar
Baber committed
416
def weighted_mean(items: List[tuple[float, float]]) -> float:
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
456
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
457
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
458
459
        self.f = f
        self.n = n
460

Leo Gao's avatar
Leo Gao committed
461
462
463
464
465
466
467
468
469
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
470

471
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
472
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
473

Leo Gao's avatar
Leo Gao committed
474
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
475
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
476
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
477
478
479
480
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
481
    res = []
482
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
483
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
484

Leo Gao's avatar
Leo Gao committed
485
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
486
487
    for bootstrap in tqdm(
        pool.imap(
488
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
489
490
491
492
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
493
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
494
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
495

Leo Gao's avatar
Leo Gao committed
496
    pool.close()
Leo Gao's avatar
Leo Gao committed
497
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
498
499


500
501
502
503
504
def stderr_for_metric(metric, bootstrap_iters: int):
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

505
506
507
508
509
510
511
512
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
513
        nanmean,
514
515
516
517
518
519
520
521
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
522
523
524
525
526
527
528
529
530
531


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
532
533
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
534
535
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
536
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
537
538
    ) / (sum(sizes) - len(sizes))

539
    return np.sqrt(pooled_sample_var / sum(sizes))
540
541
542


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
Baber Abbasi's avatar
Baber Abbasi committed
543
544
545
    assert metrics is not None, (
        "Need to pass a list of each subtask's metric for this stderr aggregation"
    )
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
578
    if not weight_by_size:
579
580
581
582
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Lintang Sutawika's avatar
Lintang Sutawika committed
583
    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)