lama.py 8.2 KB
Newer Older
KhalidAlt's avatar
KhalidAlt committed
1
"""
KhalidAlt's avatar
KhalidAlt committed
2
3
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2005.04611
KhalidAlt's avatar
KhalidAlt committed
4
LAMA is a prob dataset to test the factual and commonsense knowledge in language models. The dataset includes a subset of 
KhalidAlt's avatar
KhalidAlt committed
5
6
Google_RE (https://code.google.com/archive/p/relation-extraction-corpus/), TRex (subset of wikidata triples), 
Conceptnet (https://github.com/commonsense/conceptnet5/wiki) and Squad. 
KhalidAlt's avatar
KhalidAlt committed
7

KhalidAlt's avatar
KhalidAlt committed
8
Homepage: https://github.com/facebookresearch/LAMA
KhalidAlt's avatar
KhalidAlt committed
9
"""
10
from lm_eval.base import PromptSourceTask
KhalidAlt's avatar
KhalidAlt committed
11
12
import numpy as np 
from lm_eval.metrics import mean
KhalidAlt's avatar
KhalidAlt committed
13
from typing import Optional
KhalidAlt's avatar
KhalidAlt committed
14

15
16
17
18
19
20
21
22
23
24
25
26
_CITATION = """
@inproceedings{petroni2019language, title={Language Models as Knowledge Bases?},
               author={F. Petroni, T. Rockt{"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
               booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019}, year={2019} }

@inproceedings{petroni2020how,
               title={How Context Affects Language Models' Factual Predictions},
               author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
               booktitle={Automated Knowledge Base Construction}, year={2020}, url={https://openreview.net/forum?id=025X0zPfn} }
"""


27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class BigScienceLAMA(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "janck/bigscience-lama"
    DATASET_NAME = None


    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return False
    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return False
    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return True
    def training_docs(self):
        if self.has_training_docs():
            return self.dataset["train"]

47

KhalidAlt's avatar
KhalidAlt committed
48
49
50
51
52
53
54
class Trex(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "trex"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
55
        return False
KhalidAlt's avatar
KhalidAlt committed
56
57
58

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
59
        return False
KhalidAlt's avatar
KhalidAlt committed
60
61
62

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
63
        return True
KhalidAlt's avatar
KhalidAlt committed
64
65
66
67
68
69
70
71
72

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
KhalidAlt's avatar
KhalidAlt committed
73
            return self.dataset["validation"]
KhalidAlt's avatar
KhalidAlt committed
74
75
76

    def test_docs(self):
        if self.has_test_docs():
KhalidAlt's avatar
KhalidAlt committed
77
            return self.dataset["train"]
KhalidAlt's avatar
KhalidAlt committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    def process_results(self, doc, results):
        out = {}
        #gold = doc
        pred = results[0].strip()
        target = self.doc_to_target(doc)['obj_label']
        #pred = np.argmax(results)
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc


class google_re(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "google_re"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
114
        return False
KhalidAlt's avatar
KhalidAlt committed
115
116
117

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
118
        return False
KhalidAlt's avatar
KhalidAlt committed
119
120
121

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
122
        return True
KhalidAlt's avatar
KhalidAlt committed
123
124
125
126
127
128
129

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

130
131
    def validation_docs(self):
        if self.has_validation_docs():
KhalidAlt's avatar
KhalidAlt committed
132
            return self.dataset["validation"]
133
134
135

    def test_docs(self):
        if self.has_test_docs():
KhalidAlt's avatar
KhalidAlt committed
136
            return self.dataset["train"]
KhalidAlt's avatar
KhalidAlt committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()

        target = self.doc_to_target(doc)['obj_label']
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc

class Conceptnet(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "conceptnet"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
171
        return False
KhalidAlt's avatar
KhalidAlt committed
172
173
174

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
175
        return False
KhalidAlt's avatar
KhalidAlt committed
176
177
178

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
179
180
        return True

KhalidAlt's avatar
KhalidAlt committed
181
182
183
184
185
186
187
188
189

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
KhalidAlt's avatar
KhalidAlt committed
190
            return self.dataset["validation"]
KhalidAlt's avatar
KhalidAlt committed
191
192
193

    def test_docs(self):
        if self.has_test_docs():
KhalidAlt's avatar
KhalidAlt committed
194
            return self.dataset["train"]
KhalidAlt's avatar
KhalidAlt committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()

        target = self.doc_to_target(doc)['obj_label']
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc


class Squad(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "squad"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
230
        return False
KhalidAlt's avatar
KhalidAlt committed
231
232
233

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
234
        return False
KhalidAlt's avatar
KhalidAlt committed
235
236
237

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
KhalidAlt's avatar
KhalidAlt committed
238
239
        return True

KhalidAlt's avatar
KhalidAlt committed
240
241
242
243
244
245
246
247
248

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
KhalidAlt's avatar
KhalidAlt committed
249
            return self.dataset["validation"]
KhalidAlt's avatar
KhalidAlt committed
250
251
252

    def test_docs(self):
        if self.has_test_docs():
253

KhalidAlt's avatar
KhalidAlt committed
254
            self._test_docs = list(self.dataset["train"])
255
256
            return self._test_docs

KhalidAlt's avatar
KhalidAlt committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()
        target = self.doc_to_target(doc)['obj_label']
        #pred = np.argmax(results)
        out["acc"] = pred == target


        
        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc
283

KhalidAlt's avatar
KhalidAlt committed
284
285
286
    def max_generation_length(self) -> Optional[int]:
        """Denote where the max length of the generation if it is obvious from the task."""
        return 5
287
288