lama.py 8.17 KB
Newer Older
KhalidAlt's avatar
KhalidAlt committed
1
"""
KhalidAlt's avatar
KhalidAlt committed
2
3
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2005.04611
KhalidAlt's avatar
KhalidAlt committed
4
LAMA is a prob dataset to test the factual and commonsense knowledge in language models. The dataset includes a subset of 
KhalidAlt's avatar
KhalidAlt committed
5
6
Google_RE (https://code.google.com/archive/p/relation-extraction-corpus/), TRex (subset of wikidata triples), 
Conceptnet (https://github.com/commonsense/conceptnet5/wiki) and Squad. 
KhalidAlt's avatar
KhalidAlt committed
7

KhalidAlt's avatar
KhalidAlt committed
8
Homepage: https://github.com/facebookresearch/LAMA
KhalidAlt's avatar
KhalidAlt committed
9
"""
10
from lm_eval.base import PromptSourceTask
KhalidAlt's avatar
KhalidAlt committed
11
12
import numpy as np 
from lm_eval.metrics import mean
KhalidAlt's avatar
KhalidAlt committed
13
from typing import Optional
KhalidAlt's avatar
KhalidAlt committed
14

15
16
17
18
19
20
21
22
23
24
25
26
_CITATION = """
@inproceedings{petroni2019language, title={Language Models as Knowledge Bases?},
               author={F. Petroni, T. Rockt{"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
               booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019}, year={2019} }

@inproceedings{petroni2020how,
               title={How Context Affects Language Models' Factual Predictions},
               author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
               booktitle={Automated Knowledge Base Construction}, year={2020}, url={https://openreview.net/forum?id=025X0zPfn} }
"""


27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class BigScienceLAMA(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "janck/bigscience-lama"
    DATASET_NAME = None


    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return False
    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return False
    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return True
    def training_docs(self):
        if self.has_training_docs():
            return self.dataset["train"]

47

KhalidAlt's avatar
KhalidAlt committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class Trex(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "trex"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return True

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return True

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return False

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
            return self.dataset["train"]

    def test_docs(self):
        if self.has_test_docs():
            return self.dataset["test"]

    def process_results(self, doc, results):
        out = {}
        #gold = doc
        pred = results[0].strip()
        target = self.doc_to_target(doc)['obj_label']
        #pred = np.argmax(results)
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc


class google_re(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "google_re"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return True

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return True

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return False

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

130
131
132
133
134
135
    def validation_docs(self):
        if self.has_validation_docs():
            return self.dataset["train"]

    def test_docs(self):
        if self.has_test_docs():
KhalidAlt's avatar
KhalidAlt committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
            return self.dataset["test"]

    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()

        target = self.doc_to_target(doc)['obj_label']
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc

class Conceptnet(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "conceptnet"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return True

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return True

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return False

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
            return self.dataset["train"]

    def test_docs(self):
        if self.has_test_docs():
            return self.dataset["test"]

    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()

        target = self.doc_to_target(doc)['obj_label']
        out["acc"] = pred == target


        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc


class Squad(PromptSourceTask):
    VERSION = 0
    DATASET_PATH = "lama"
    DATASET_NAME = "squad"

    def has_training_docs(self):
        # TODO: Fill in the return with `True` if the Task has training data; else `False`.
        return True

    def has_validation_docs(self):
        # TODO: Fill in the return with `True` if the Task has validation data; else `False`.
        return True

    def has_test_docs(self):
        # TODO: Fill in the return with `True` if the Task has test data; else `False`.
        return False

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                self._training_docs = list(self.dataset["train"])
            return self._training_docs

    def validation_docs(self):
        if self.has_validation_docs():
            return self.dataset["train"]

    def test_docs(self):
        if self.has_test_docs():
251

252
253
254
            self._test_docs = list(self.dataset["test"])
            return self._test_docs

KhalidAlt's avatar
KhalidAlt committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def process_results(self, doc, results):
        out = {}
        pred = results[0].strip()
        target = self.doc_to_target(doc)['obj_label']
        #pred = np.argmax(results)
        out["acc"] = pred == target


        
        if self.save_examples:
            example = {
                "pred": pred,
                "target": target,
            }
            return out, example

        return out

    def higher_is_better(self):
        return {"acc": True}

    def aggregation(self):
        return {"acc": mean}

    def doc_to_target(self, doc):
        return doc
281

KhalidAlt's avatar
KhalidAlt committed
282
283
284
    def max_generation_length(self) -> Optional[int]:
        """Denote where the max length of the generation if it is obvious from the task."""
        return 5
285
286