utils.py 8.13 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Stephen Hogg's avatar
Stephen Hogg committed
2
import pathlib
Leo Gao's avatar
Leo Gao committed
3
import re
4
import collections
5
import functools
Leo Gao's avatar
Leo Gao committed
6
import inspect
Stephen Hogg's avatar
Stephen Hogg committed
7
import sys
gakada's avatar
gakada committed
8
import fnmatch
9
10
from typing import List, Union

11
import gc
12
import torch
sdtblck's avatar
sdtblck committed
13

Xingjian Shi's avatar
Xingjian Shi committed
14
from omegaconf import OmegaConf
sdtblck's avatar
sdtblck committed
15
16
17
18
19
20
21
22
23
24
25


class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
49
50
51
52
53
54
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
55
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
56
57
58
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
59
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
60
    return args_dict
Leo Gao's avatar
Leo Gao committed
61

Fabrizio Milo's avatar
Fabrizio Milo committed
62

Leo Gao's avatar
Leo Gao committed
63
64
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
65
        yield from iter
Leo Gao's avatar
Leo Gao committed
66
67


68
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
69
    arr = []
70
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
71
        arr.append(x)
72
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
73
74
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
75
76
77
78

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
79

80
81
82
83
84
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
85

86
87
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
88

gakada's avatar
gakada committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def _is_json_task(task_name):
    return task_name == "json" or task_name.startswith("json=")


class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
            if len(fnmatch.filter(self.choices, value)) == 0 and not _is_json_task(
                value
            ):
                return False

        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        if _is_json_task(pattern):
            task_names.add(pattern)

        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
125
126
127
128
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
129
130
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
131
    string = re.sub(r" (['.,])", r"\1", string)
132
133
134
    return string


Jason Phang's avatar
Jason Phang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
162
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
163
164
165
166
167
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
168

Jason Phang's avatar
Jason Phang committed
169
        yield (
Fabrizio Milo's avatar
Fabrizio Milo committed
170
171
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
172
173
174
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
175

Leo Gao's avatar
Leo Gao committed
176
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
177
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
178
    a, b = pair
179
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
180

Jason Phang's avatar
Jason Phang committed
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


202
203
204
205
206
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
Fabrizio Milo's avatar
Fabrizio Milo committed
207
        arr = [([y[0] for y in x], x[0][1]) for x in arr]
208
209
210
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
211

212
213
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
214

215
216
217
218
219
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
220
            for ind in inds:
221
222
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
223

224
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
225

226
227
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
228

229
230
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
231
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
232
233
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
234

235
236
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
237
238
239
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
240
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
241
242
                "lm-evaluation-harness!"
            )
243
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
244

245
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
246

Fabrizio Milo's avatar
Fabrizio Milo committed
247

Stephen Hogg's avatar
Stephen Hogg committed
248
249
250
251
252
253
254
255
256
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
257
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
258
259
260
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
261
262
263
264
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
265
266

@positional_deprecated
267
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
268
269
270
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
271
272
    import pytest

273
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
274
275
276
277
278
279
280
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
281
282
283
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
284
285
286
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
287
288
289
290
291


def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()