vllm_causallms.py 30.3 KB
Newer Older
1
import copy
2
import gc
3
import inspect
Lintang Sutawika's avatar
Lintang Sutawika committed
4
import logging
5
import os
Baber Abbasi's avatar
Baber Abbasi committed
6
from importlib.metadata import version
7
from importlib.util import find_spec
8
9
10
from multiprocessing import Process, Queue
from queue import Empty
from time import sleep
11
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union
12

13
import jinja2
14
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
15
from packaging.version import parse as parse_version
16
17
from tqdm import tqdm

baberabb's avatar
baberabb committed
18
from lm_eval.api.instance import Instance
19
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
20
from lm_eval.api.registry import register_model
21
22
23
24
25
26
from lm_eval.models.utils import (
    Collator,
    configure_pad_token,
    handle_stop_sequences,
    undistribute,
)
27
28
29
30
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)
31

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
32

33
try:
34
    import ray
35
    from vllm import LLM, SamplingParams
36
    from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
37
    from vllm.transformers_utils.tokenizer import get_tokenizer
38
    from vllm.utils import get_open_port
39
40
41

    if parse_version(version("vllm")) >= parse_version("0.8.3"):
        from vllm.entrypoints.chat_utils import resolve_hf_chat_template
42
43
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
44

45
46
if TYPE_CHECKING:
    pass
bcicc's avatar
bcicc committed
47

Lintang Sutawika's avatar
Lintang Sutawika committed
48
eval_logger = logging.getLogger(__name__)
baberabb's avatar
baberabb committed
49

baberabb's avatar
baberabb committed
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def _vllm_mp_worker(
    model_args: dict,
    sampling_params: "SamplingParams",
    requests: list[list[int]],
    lora_request: "LoRARequest",
    result_queue: "Queue",
    dp_size: int,
    local_dp_rank: int,
    dp_master_port: int,
    dp_master_ip: str = "127.0.0.1",
) -> None:
    """
    Worker process for vLLM multiprocessing.
    Initializes a vLLM engine, processes requests, and puts results or errors
    onto the result_queue.
    """

    if not requests:
        result_queue.put((local_dp_rank, []))
        return None

    os.environ["VLLM_DP_RANK"] = os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = str(dp_master_ip)
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)

    llm = None
    try:
        llm = LLM(**model_args)
        res = llm.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
            lora_request=lora_request,
        )
        # Give engines time to pause their processing loops before exiting."
        sleep(1)
        result_queue.put((local_dp_rank, res))

    except Exception as e:
        error_message = f"Worker {local_dp_rank} failed during generation: {type(e).__name__}: {str(e)}"
        eval_logger.error(error_message, exc_info=True)
        result_queue.put((local_dp_rank, {"error": error_message}))

    finally:
        if llm is not None:
            try:
                del llm
                gc.collect()
            except Exception as e_cleanup:
                eval_logger.warning(
                    f"Worker {local_dp_rank} encountered an error during LLM cleanup: {type(e_cleanup).__name__}: {str(e_cleanup)}",
                    exc_info=True,
                )

    return None


baberabb's avatar
baberabb committed
108
@register_model("vllm")
109
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
110
111
112
113
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
114
        pretrained: str,
baberabb's avatar
baberabb committed
115
116
117
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
118
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
119
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
120
        tokenizer_revision: Optional[str] = None,
121
        add_bos_token: Optional[bool] = False,
122
        prefix_token_id: Optional[int] = None,
baberabb's avatar
baberabb committed
123
        tensor_parallel_size: int = 1,
124
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
125
126
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
127
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
128
        max_batch_size=None,
baberabb's avatar
baberabb committed
129
        max_length: int = None,
130
        max_model_len: int = None,
baberabb's avatar
baberabb committed
131
        seed: int = 1234,
132
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
133
        device: str = "cuda",
134
        data_parallel_size: int = 1,
bcicc's avatar
bcicc committed
135
        lora_local_path: str = None,
136
        enable_thinking: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
137
        **kwargs,
baberabb's avatar
baberabb committed
138
139
    ):
        super().__init__()
140

141
        if not find_spec("vllm"):
142
            raise ModuleNotFoundError(
143
144
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
145
146
            )

Baber Abbasi's avatar
Baber Abbasi committed
147
148
149
        assert max_length is None or max_model_len is None, (
            "Either max_length or max_model_len may be provided, but not both"
        )
150
        self.V1 = os.environ.get("VLLM_USE_V1", "1") != "0"
151
        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
152
        self.tensor_parallel_size = int(tensor_parallel_size)
153
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
154
155
156
157
158
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
159
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
160
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
161
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
162
163
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
164
            "max_model_len": int(self._max_length) if self._max_length else None,
165
            "max_num_seqs": kwargs.get("max_num_seqs", max_batch_size),
baberabb's avatar
baberabb committed
166
167
168
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
169
            "device": str(device),
baberabb's avatar
baberabb committed
170
        }
Baber Abbasi's avatar
Baber Abbasi committed
171
        self.model_args.update(kwargs)
172
173
174
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
175
            else int(batch_size)
176
        )
177
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
178
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
179
        else:
Baber Abbasi's avatar
Baber Abbasi committed
180
181
182
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
183
184
185
186
187
            self.model_args["distributed_executor_backend"] = (
                "ray"
                if not self.V1
                else self.model_args.get("distributed_executor_backend", None)
            )
188
189
190
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

191
        from transformers import AutoConfig
192

193
194
195
        self._config = AutoConfig.from_pretrained(
            pretrained, trust_remote_code=trust_remote_code, revision=revision
        )
baberabb's avatar
nits  
baberabb committed
196
197
198
199
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
200
            revision=tokenizer_revision,
201
            add_bos_token=add_bos_token,
baberabb's avatar
nits  
baberabb committed
202
        )
203
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self._config)
204
        self.enable_thinking = enable_thinking
205
        self.add_bos_token = add_bos_token
206
207
208
        if "gemma" in pretrained.lower():
            self.add_bos_token = True
            eval_logger.info(
209
                "Found 'gemma' in model name, a BOS token will be used as Gemma series models underperform without it."
210
211
            )

212
        if parse_version(version("vllm")) >= parse_version("0.8.3"):
213
214
215
216
217
218
219
            kwargs_resolve_hf_chat_template = {
                "tokenizer": self.tokenizer,
                "chat_template": None,
                "tools": None,
            }

            if parse_version(version("vllm")) >= parse_version("0.9.0"):
220
221
222
223
224
225
226
227
228
229
230
                if self.data_parallel_size <= 1:
                    kwargs_resolve_hf_chat_template["model_config"] = (
                        self.model.llm_engine.model_config
                    )
                else:
                    from vllm.engine.arg_utils import EngineArgs

                    engine_args = EngineArgs(**self.model_args)
                    model_config = engine_args.create_model_config()

                    kwargs_resolve_hf_chat_template["model_config"] = model_config
231
232
233
234
235
236
237
238
239
240

            # https://github.com/vllm-project/vllm/pull/18259
            if (
                "trsut_remote_code"
                in inspect.signature(resolve_hf_chat_template).parameters
            ):
                kwargs_resolve_hf_chat_template["trsut_remote_code"] = trust_remote_code
            else:
                kwargs_resolve_hf_chat_template["trust_remote_code"] = trust_remote_code

241
            self.hf_chat_template = resolve_hf_chat_template(
242
                **kwargs_resolve_hf_chat_template
243
244
245
            )
        else:
            self.hf_chat_template = None
246

247
248
249
250
251
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
252

baberabb's avatar
baberabb committed
253
254
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
255
        if lora_local_path is not None:
Baber Abbasi's avatar
Baber Abbasi committed
256
257
258
            assert parse_version(version("vllm")) > parse_version("0.3.0"), (
                "lora adapters only compatible with vllm > v0.3.0."
            )
bcicc's avatar
bcicc committed
259
260
261
262
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
263
264
265
266
267
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

268
269
270
271
272
273
274
275
276
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
277
278
279
280
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
281
282
283
284
285
286
287
288
289
290
291
292
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
293
294
295
296
297

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

Baber Abbasi's avatar
Baber Abbasi committed
298
299
300
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
301
302
303
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_templated = self.tokenizer.apply_chat_template(
                [msg for msg in chat_history if msg["role"] != "system"],
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
            )
325

Baber Abbasi's avatar
Baber Abbasi committed
326
327
        return chat_templated

328
329
330
331
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

baberabb's avatar
baberabb committed
332
333
    def tok_encode(
        self,
334
335
336
337
338
        string: Union[str, List[str]],
        left_truncate_len: int = None,
        add_special_tokens: bool = False,
        truncation: bool = False,
    ) -> Union[List[int], List[List[int]]]:
339
340
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
341
342
343
344
345
346
        encoding: Union[List[List[int]], List[int]] = self.tokenizer(
            string,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            return_attention_mask=False,
        ).input_ids
baberabb's avatar
baberabb committed
347
348
349

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
350
351
352
353
            if not isinstance(string, str):
                encoding = [enc[-left_truncate_len:] for enc in encoding]
            else:
                encoding = encoding[-left_truncate_len:]
baberabb's avatar
baberabb committed
354
355
356
357
358

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
359
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
360
361
362
363
364
365
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
366
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
367
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
368
        else:
baberabb's avatar
baberabb committed
369
            sampling_params = SamplingParams(
370
                temperature=0, prompt_logprobs=1, max_tokens=1, detokenize=False
baberabb's avatar
baberabb committed
371
            )
372
        if self.data_parallel_size > 1 and not self.V1:
Baber Abbasi's avatar
Baber Abbasi committed
373
            # vLLM hangs if resources are set in ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
374
375
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
Baber Abbasi's avatar
Baber Abbasi committed
376
            @ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
377
            def run_inference_one_model(
378
                model_args: dict,
Baber Abbasi's avatar
Baber Abbasi committed
379
                sampling_params: SamplingParams,
380
381
                requests: List[List[int]],
                lora_request: LoRARequest,
Baber Abbasi's avatar
Baber Abbasi committed
382
383
384
            ):
                llm = LLM(**model_args)
                return llm.generate(
385
386
387
                    prompt_token_ids=requests,
                    sampling_params=sampling_params,
                    lora_request=lora_request,
Baber Abbasi's avatar
Baber Abbasi committed
388
389
                )

390
391
392
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
393
394
395
396
            inputs = (
                (self.model_args, sampling_params, req, self.lora_request)
                for req in requests
            )
Baber Abbasi's avatar
Baber Abbasi committed
397
398
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
399
400
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
401
            # flatten results
402
            return undistribute(results)
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        elif self.data_parallel_size > 1:
            # based on https://github.com/vllm-project/vllm/blob/a04720bc36401d831cb048c3917b9e58173d9c1d/examples/offline_inference/data_parallel.py
            dp_size = self.data_parallel_size
            dp_master_ip = os.environ.get("VLLM_DP_MASTER_IP", "127.0.0.1")
            dp_master_port = os.environ.get("VLLM_DP_MASTER_PORT") or get_open_port()

            requests = (list(x) for x in distribute(self.data_parallel_size, requests))

            procs, resq = [], Queue()
            # We use Process as it is non-daemonic
            try:
                for rank, req in enumerate(requests):
                    proc = Process(
                        target=_vllm_mp_worker,
                        args=(
                            self.model_args.copy(),
                            sampling_params,
                            req,
                            self.lora_request,
                            resq,
                            dp_size,
                            rank,
                            dp_master_port,
                            dp_master_ip,
                        ),
                    )
                    proc.start()
                    procs.append(proc)

                # Collect results
                rank_res = {}
                while len(rank_res) < len(procs):
                    try:
                        rank, result = resq.get(timeout=30)
                        if isinstance(result, dict) and "error" in result:
                            raise RuntimeError(result["error"])
                        rank_res[rank] = result
                    except Empty:
                        dead_procs = [
                            idx
                            for idx, p in enumerate(procs)
                            if not p.is_alive() and idx not in rank_res
                        ]
                        if dead_procs:
                            raise RuntimeError(
                                f"Worker processes {dead_procs} died unexpectedly"
                            )
                        continue

                results = [rank_res[i] for i in range(len(procs))]
                return undistribute(results)

            # cleanup
            finally:
                try:
                    resq.close()
                    resq.join_thread()
                except Exception:
                    eval_logger.debug(
                        "Failed to close vllm DP results queue", exc_info=True
                    )
                for proc in procs:
                    proc.join(timeout=10)
                    if proc.is_alive():
                        proc.terminate()
                        proc.join(timeout=5)
                        if proc.is_alive():
                            proc.kill()
baberabb's avatar
baberabb committed
471

472
473
474
475
476
477
478
479
        else:
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
                lora_request=self.lora_request,
            )
            return outputs
baberabb's avatar
baberabb committed
480

481
482
483
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        adaptive_batch_size = None
        if self.batch_size == "auto":
            adaptive_batch_size = len(requests)

        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
        ):
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
baberabb's avatar
baberabb committed
499
                map(
500
501
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
502
                        token_list=self.tok_encode(string),
503
504
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
baberabb's avatar
baberabb committed
505
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
506
507
508
509
510
                        context_len=1,
                    ),
                )
            )

511
512
            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            windows = [(None,) + x for x in rolling_token_windows]
baberabb's avatar
baberabb committed
513

514
515
516
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
baberabb's avatar
baberabb committed
517

518
519
520
521
522
523
        all_nlls = []
        batch_size = adaptive_batch_size or int(self.batch_size)
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)
baberabb's avatar
baberabb committed
524

525
526
527
528
529
530
            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
            )
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
531

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
547

baberabb's avatar
baberabb committed
548
549
        return loglikelihoods

550
551
552
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
553
        res = []
baberabb's avatar
baberabb committed
554
555
556

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
557
558
559
        context_encoding: List[List[int]] = self.tok_encode(
            context, add_special_tokens=self.add_bos_token
        )
baberabb's avatar
baberabb committed
560
561
562
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
563
564
565
566
567
568
569
570

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
571
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
572
573
574
575

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
576
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
577
578
579
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
580

581
582
        pbar = tqdm(
            total=len(requests),
583
            disable=(disable_tqdm or (self.rank != 0)),
584
585
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
586
        # for each different set of kwargs, we execute all requests, by batch.
587
        eos = self.tokenizer.decode(self.eot_token_id)
588
589
590
591
592
593
594
595
596
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
597
598
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
599
600
            else:
                raise ValueError(
601
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
baberabb's avatar
baberabb committed
602
                )
603
604
605
606
607
608
609
610
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
611
612
613
614
615
616
            all_lengths = [len(x) for x in context_encoding]
            for length in all_lengths:
                if length > max_ctx_len:
                    eval_logger.warning(
                        f"Context length {length} exceeds max length (context + max gen tokens): {max_ctx_len}. Truncating context."
                    )
617
618
619
620
621
622
623
624
625
626
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
627

628
629
630
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
631
632
633
634
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        generated_text = generated_text.split(term)[0]
635
636
637
638
639
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
640
641

        pbar.close()
642
643
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
644
645

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
646
647
648
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
649
650
651
652
653
654
655
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

656
657
658
659
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
660
        )
661

662
663
664
665
666
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
667
        for chunk in chunks:
668
            inputs = []
baberabb's avatar
baberabb committed
669
670
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
671
672
                if (
                    full_length := len(context_enc + continuation_enc)
673
                ) > self.max_length:
674
675
676
                    eval_logger.warning(
                        f"Context length {full_length} exceeds max length ({self.max_length}). Truncating context."
                    )
baberabb's avatar
baberabb committed
677
678
679
680
681
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

682
                inputs.append(inp)
baberabb's avatar
baberabb committed
683
684
                ctxlens.append(ctxlen)

685
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
686

687
688
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
689
690
            ):
                answer = self._parse_logprobs(
691
692
693
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
694
695
696
697
698
                )

                res.append(answer)

                if cache_key is not None:
699
700
701
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
baberabb's avatar
baberabb committed
702
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
703
                pbar.update(1)
baberabb's avatar
baberabb committed
704
705
706
707
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
708
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
709
710
711
        """Process logprobs and tokens.

        :param tokens: list
712
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
713
        :param outputs: RequestOutput
714
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
715
716
717
718
719
720
721
722
723
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

724
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
725
726
        continuation_logprobs_dicts = outputs.prompt_logprobs

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
747
        # Calculate continuation_logprobs
748
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
749
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
750
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
751
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
752
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
753
754
755
756
757
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
758
759
760
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
761
762
763
764
765
766
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
767
768

        return continuation_logprobs, is_greedy
769
770
771
772

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
773
        kwargs["temperature"] = kwargs.get("temperature", 0.0)
774
        do_sample = kwargs.pop("do_sample", None)
775
776
777
778
        if do_sample is False and "temperature" not in kwargs:
            eval_logger.debug(
                "Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ..."
            )
779
780
781
782
783
784
785
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs