metrics.py 9.58 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8

haileyschoelkopf's avatar
haileyschoelkopf committed
9
import evaluate
&'s avatar
& committed
10

haileyschoelkopf's avatar
haileyschoelkopf committed
11
12

AGGREGATION_REGISTRY = {}
13
14
METRIC_REGISTRY = {
    "acc": None,
haileyschoelkopf's avatar
haileyschoelkopf committed
15
16
17
    "acc_norm": None,
    "word_perplexity": None,
    "byte_perplexity": None,
18
}
haileyschoelkopf's avatar
haileyschoelkopf committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def register_metric(name):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert (
            name not in METRIC_REGISTRY
        ), f"metric named '{name}' conflicts with existing registered metric!"

        METRIC_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_metric(name):

    try:
        return METRIC_REGISTRY[name]
    except KeyError:
        # TODO: change this print to logging?
        print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
        try:
            metric_object = evaluate.load(name)
            return metric_object.compute
        except:
            raise Warning(
                "{} not found in the evaluate library!".format(name),
                "Please check https://huggingface.co/evaluate-metric",
            )


def register_aggregation(name):
53
    # TODO: should we enforce a specific interface to aggregation metrics?
haileyschoelkopf's avatar
haileyschoelkopf committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    def decorate(fn):
        assert (
            name not in AGGREGATION_REGISTRY
        ), f"aggregation named '{name}' conflicts with existing registered aggregation!"

        AGGREGATION_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_aggregation(name):

    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
        raise Warning(
            "{} not a registered aggregation metric!".format(name),
        )


@register_aggregation("mean")
&'s avatar
& committed
76
77
78
79
def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
80
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
81
82
83
84
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
85
86
87
88
89
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
90
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
91
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
92
93


haileyschoelkopf's avatar
haileyschoelkopf committed
94
@register_aggregation("median")
&'s avatar
& committed
95
96
97
98
def median(arr):
    return arr[len(arr) // 2]


haileyschoelkopf's avatar
haileyschoelkopf committed
99
@register_metric("matthews_corrcoef")
&'s avatar
& committed
100
101
102
103
104
105
106
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


haileyschoelkopf's avatar
haileyschoelkopf committed
107
@register_metric("f1_score")
&'s avatar
& committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
124
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
125
        question_id = doc["idx"]["question"]
126
127
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
128
129
130

        gold_label = doc["label"] == 1

131
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
132
133
134
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

135

Leo Gao's avatar
Leo Gao committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
153
154
155
156
157
158
159
160
161
162

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


haileyschoelkopf's avatar
haileyschoelkopf committed
163
@register_metric("perplexity")
164
@register_aggregation("perplexity")
&'s avatar
& committed
165
166
167
168
def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
169
170
171
172
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

173

haileyschoelkopf's avatar
haileyschoelkopf committed
174
@register_metric("weighted_perplexity")
haileyschoelkopf's avatar
haileyschoelkopf committed
175
@register_aggregation("weighted_perplexity")
Leo Gao's avatar
Leo Gao committed
176
177
178
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
179

haileyschoelkopf's avatar
haileyschoelkopf committed
180
181
@register_metric("bits_per_byte")
@register_aggregation("bits_per_byte")
182
183
184
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
185

haileyschoelkopf's avatar
haileyschoelkopf committed
186
@register_metric("bleu")
&'s avatar
& committed
187
188
189
190
191
192
193
194
195
196
197
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
198
199
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
200
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
201
202
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
203

haileyschoelkopf's avatar
haileyschoelkopf committed
204
@register_metric("chrf")
&'s avatar
& committed
205
206
207
208
209
210
211
212
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
213
214
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
215
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
216
217
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
218

haileyschoelkopf's avatar
haileyschoelkopf committed
219
@register_metric("ter")
&'s avatar
& committed
220
221
222
223
224
225
226
227
228
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
229
230
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
231
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
232
233
234
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
235
236
237
238
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
239
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
240
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
241
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
242
243
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
244
245
246
247
248
249
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
250
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
251
        refs = list(refs)
&'s avatar
& committed
252
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
253
        refs = [[ref] for ref in refs]
&'s avatar
& committed
254
255
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
256

&'s avatar
& committed
257
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
258
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
259
        preds = list(preds)
&'s avatar
& committed
260
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
261
262
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
263
264

    return refs, preds
Leo Gao's avatar
Leo Gao committed
265

Fabrizio Milo's avatar
Fabrizio Milo committed
266

267
# stderr stuff
Leo Gao's avatar
Leo Gao committed
268

Fabrizio Milo's avatar
Fabrizio Milo committed
269

Leo Gao's avatar
Leo Gao committed
270
271
272
273
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
274

Leo Gao's avatar
Leo Gao committed
275
276
277
278
279
280
281
282
283
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
284

285
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
286
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
287

Leo Gao's avatar
Leo Gao committed
288
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
289
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
290
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
291
292
293
294
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
295
    res = []
296
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
297
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
298

Leo Gao's avatar
Leo Gao committed
299
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
300
301
    for bootstrap in tqdm(
        pool.imap(
302
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
303
304
305
306
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
307
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
308
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
309

Leo Gao's avatar
Leo Gao committed
310
    pool.close()
Leo Gao's avatar
Leo Gao committed
311
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
312
313


314
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
315
316
317
318
319
320
321
322
323
324
325
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
326
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
327

Fabrizio Milo's avatar
Fabrizio Milo committed
328
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
329

Leo Gao's avatar
Leo Gao committed
330
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
331
332
333
334


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
335
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
336
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
337
        return "no"