niah_utils.py 4.45 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
import itertools
Baber's avatar
cleanup  
Baber committed
2
from typing import Generator
Baber's avatar
cleanup  
Baber committed
3
4
5

import datasets

Baber's avatar
Baber committed
6
from lm_eval.tasks.ruler.common_utils import DEFAULT_SEQ_LENGTHS, get_tokenizer
Baber's avatar
cleanup  
Baber committed
7
from lm_eval.tasks.ruler.prepare_niah import generate_samples, get_haystack
Baber's avatar
Baber committed
8

Baber's avatar
cleanup  
Baber committed
9
10
11
12
13
14
15
16
17
18
19
20

TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text?"""


def download_dataset(df: Generator) -> dict[str, datasets.Dataset]:
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


Baber's avatar
Baber committed
21
22
23
24
25
26
27
28
29
30
def niah_single_1(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="repeat"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="repeat",
            type_needle_k="words",
            type_needle_v="numbers",
Baber's avatar
Baber committed
31
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
32
33
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
34
    )
Baber's avatar
Baber committed
35
36
37
38
39
40
41
42
43
44
45
46


def niah_single_2(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
Baber's avatar
Baber committed
47
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
48
49
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
50
    )
Baber's avatar
Baber committed
51
52
53
54
55
56
57
58
59
60
61
62


def niah_single_3(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="uuids",
Baber's avatar
Baber committed
63
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
64
65
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
66
    )
Baber's avatar
Baber committed
67
68
69
70
71
72
73
74
75
76
77
78
79


def niah_multikey_1(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_k=4,
Baber's avatar
Baber committed
80
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
81
82
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
83
    )
Baber's avatar
Baber committed
84
85
86
87
88
89
90
91
92
93
94
95


def niah_multikey_2(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="needle"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="needle",
            type_needle_k="words",
            type_needle_v="numbers",
Baber's avatar
Baber committed
96
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
97
98
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
99
    )
Baber's avatar
Baber committed
100
101
102
103
104
105
106
107
108
109
110
111


def niah_multikey_3(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="needle"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="needle",
            type_needle_k="uuids",
            type_needle_v="uuids",
Baber's avatar
Baber committed
112
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
113
114
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
115
    )
Baber's avatar
Baber committed
116
117
118
119
120
121
122
123
124
125
126
127
128


def niah_multivalue(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_v=4,
Baber's avatar
Baber committed
129
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
130
131
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
132
    )
Baber's avatar
Baber committed
133
134
135
136
137
138
139
140
141
142
143
144
145


def niah_multiquery(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_q=4,
Baber's avatar
Baber committed
146
            TOKENIZER=get_tokenizer(**kwargs),
Baber's avatar
Baber committed
147
148
        )
        for seq in seq_lengths
Baber's avatar
cleanup  
Baber committed
149
    )