niah_utils.py 3.67 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
import itertools
Baber's avatar
cleanup  
Baber committed
2
from typing import Generator
Baber's avatar
cleanup  
Baber committed
3
4
5

import datasets

Baber's avatar
cleanup  
Baber committed
6
from lm_eval.tasks.ruler.prepare_niah import generate_samples, get_haystack
Baber's avatar
cleanup  
Baber committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from lm_eval.tasks.ruler.common_utils import SEQ_LENGTHS, get_tokenizer

TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text?"""


def download_dataset(df: Generator) -> dict[str, datasets.Dataset]:
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


# ruff: noqa
niah_single_1 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="repeat"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="repeat",
        type_needle_k="words",
        type_needle_v="numbers",
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# ruff: noqa
niah_single_2 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_single_3 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="uuids",
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_1 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_k=4,
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_2 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="words",
        type_needle_v="numbers",
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_3 = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="uuids",
        type_needle_v="uuids",
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multivalue = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_v=4,
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multiquery = lambda **kwargs: download_dataset(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_q=4,
        TOKENIZER=get_tokenizer(**kwargs.get("metadata")),
    )
    for seq in SEQ_LENGTHS
)