registry.py 5.39 KB
Newer Older
1
import logging
Baber's avatar
Baber committed
2
from typing import TYPE_CHECKING, Callable, Dict, Optional, Union
3

4

Baber's avatar
Baber committed
5
6
if TYPE_CHECKING:
    from lm_eval.api.model import LM
lintangsutawika's avatar
lintangsutawika committed
7

Lintang Sutawika's avatar
Lintang Sutawika committed
8
eval_logger = logging.getLogger(__name__)
9
10
11
12
13

MODEL_REGISTRY = {}


def register_model(*names):
Baber's avatar
Baber committed
14
15
    from lm_eval.api.model import LM

16
17
18
19
20
    # either pass a list or a single alias.
    # function receives them as a tuple of strings

    def decorate(cls):
        for name in names:
Baber Abbasi's avatar
Baber Abbasi committed
21
22
23
            assert issubclass(cls, LM), (
                f"Model '{name}' ({cls.__name__}) must extend LM class"
            )
24

Baber Abbasi's avatar
Baber Abbasi committed
25
26
27
            assert name not in MODEL_REGISTRY, (
                f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."
            )
28
29
30
31
32
33
34

            MODEL_REGISTRY[name] = cls
        return cls

    return decorate


Baber's avatar
Baber committed
35
def get_model(model_name: str) -> type["LM"]:
haileyschoelkopf's avatar
haileyschoelkopf committed
36
37
38
    try:
        return MODEL_REGISTRY[model_name]
    except KeyError:
39
40
41
        raise ValueError(
            f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}"
        )
42
43
44
45


TASK_REGISTRY = {}
GROUP_REGISTRY = {}
46
ALL_TASKS = set()
47
48
49
func2task_index = {}


Baber's avatar
Baber committed
50
def register_task(name: str):
51
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
52
53
54
        assert name not in TASK_REGISTRY, (
            f"task named '{name}' conflicts with existing registered task!"
        )
55
56

        TASK_REGISTRY[name] = fn
57
        ALL_TASKS.add(name)
58
59
60
61
62
63
64
65
66
67
68
69
70
        func2task_index[fn.__name__] = name
        return fn

    return decorate


def register_group(name):
    def decorate(fn):
        func_name = func2task_index[fn.__name__]
        if name in GROUP_REGISTRY:
            GROUP_REGISTRY[name].append(func_name)
        else:
            GROUP_REGISTRY[name] = [func_name]
71
            ALL_TASKS.add(name)
72
73
74
75
76
77
        return fn

    return decorate


OUTPUT_TYPE_REGISTRY = {}
78
79
METRIC_REGISTRY = {}
METRIC_AGGREGATION_REGISTRY = {}
Baber Abbasi's avatar
Baber Abbasi committed
80
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {}
81
HIGHER_IS_BETTER_REGISTRY = {}
82
FILTER_REGISTRY = {}
83
84
85
86
87
88
89

DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
90
    "multiple_choice": ["acc", "acc_norm"],
91
    "generate_until": ["exact_match"],
92
93
94
95
96
97
98
99
100
101
102
103
}


def register_metric(**args):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert "metric" in args
        name = args["metric"]

        for key, registry in [
            ("metric", METRIC_REGISTRY),
            ("higher_is_better", HIGHER_IS_BETTER_REGISTRY),
104
            ("aggregation", METRIC_AGGREGATION_REGISTRY),
105
106
107
        ]:
            if key in args:
                value = args[key]
Baber Abbasi's avatar
Baber Abbasi committed
108
109
110
                assert value not in registry, (
                    f"{key} named '{value}' conflicts with existing registered {key}!"
                )
111
112
113
114
115
116
117
118
119
120
121
122
123

                if key == "metric":
                    registry[name] = fn
                elif key == "aggregation":
                    registry[name] = AGGREGATION_REGISTRY[value]
                else:
                    registry[name] = value

        return fn

    return decorate


Baber's avatar
Baber committed
124
def get_metric(name: str, hf_evaluate_metric=False) -> Optional[Callable]:
125
126
127
128
129
130
131
    if not hf_evaluate_metric:
        if name in METRIC_REGISTRY:
            return METRIC_REGISTRY[name]
        else:
            eval_logger.warning(
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
132

133
    try:
Baber's avatar
Baber committed
134
135
        import evaluate as hf_evaluate

Baber Abbasi's avatar
Baber Abbasi committed
136
        metric_object = hf_evaluate.load(name)
137
138
139
140
        return metric_object.compute
    except Exception:
        eval_logger.error(
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
141
142
143
        )


Baber Abbasi's avatar
Baber Abbasi committed
144
def register_aggregation(name: str):
145
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
146
147
148
        assert name not in AGGREGATION_REGISTRY, (
            f"aggregation named '{name}' conflicts with existing registered aggregation!"
        )
149
150
151
152
153
154
155

        AGGREGATION_REGISTRY[name] = fn
        return fn

    return decorate


Baber's avatar
Baber committed
156
def get_aggregation(name: str) -> Optional[Callable[[], Dict[str, Callable]]]:
157
158
159
    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
160
        eval_logger.warning(f"{name} not a registered aggregation metric!")
haileyschoelkopf's avatar
haileyschoelkopf committed
161
162


Baber's avatar
Baber committed
163
def get_metric_aggregation(name: str) -> Optional[Callable[[], Dict[str, Callable]]]:
164
165
166
    try:
        return METRIC_AGGREGATION_REGISTRY[name]
    except KeyError:
167
        eval_logger.warning(f"{name} metric is not assigned a default aggregation!")
168
169


Baber's avatar
Baber committed
170
def is_higher_better(metric_name) -> Optional[bool]:
haileyschoelkopf's avatar
haileyschoelkopf committed
171
172
173
    try:
        return HIGHER_IS_BETTER_REGISTRY[metric_name]
    except KeyError:
174
175
176
        eval_logger.warning(
            f"higher_is_better not specified for metric '{metric_name}'!"
        )
177
178
179
180
181
182
183
184
185
186
187
188
189
190


def register_filter(name):
    def decorate(cls):
        if name in FILTER_REGISTRY:
            eval_logger.info(
                f"Registering filter `{name}` that is already in Registry {FILTER_REGISTRY}"
            )
        FILTER_REGISTRY[name] = cls
        return cls

    return decorate


191
def get_filter(filter_name: Union[str, Callable]) -> Callable:
192
193
    try:
        return FILTER_REGISTRY[filter_name]
194
195
196
197
198
199
    except KeyError as e:
        if callable(filter_name):
            return filter_name
        else:
            eval_logger.warning(f"filter `{filter_name}` is not registered!")
            raise e