vllm_causallms.py 16.1 KB
Newer Older
1
2
3
4
import copy
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

5
from more_itertools import distribute
6
7
from tqdm import tqdm

baberabb's avatar
baberabb committed
8
from lm_eval.api.instance import Instance
9
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
10
from lm_eval.api.registry import register_model
11
from lm_eval.models.utils import Collator, undistribute
12
13
14
15
16
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
17

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
18

19
try:
20
    import ray
baberabb's avatar
baberabb committed
21
    from ray.util.multiprocessing import Pool
22
    from vllm import LLM, SamplingParams
baberabb's avatar
baberabb committed
23
    from vllm.transformers_utils.tokenizer import get_tokenizer
24
25
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
26

27
eval_logger = eval_logger
baberabb's avatar
baberabb committed
28

baberabb's avatar
baberabb committed
29

baberabb's avatar
baberabb committed
30
# adapted from https://github.com/vllm-project/vllm/issues/367#issuecomment-1788341727
31
32
33
def run_inference_one_model(
    model_args: dict, sampling_params, requests: List[List[int]]
):
baberabb's avatar
baberabb committed
34
35
36
37
    llm = LLM(**model_args)
    return llm.generate(prompt_token_ids=requests, sampling_params=sampling_params)


baberabb's avatar
baberabb committed
38
@register_model("vllm")
39
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
40
41
42
43
44
45
46
47
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
48
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
49
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
50
        tokenizer_revision: Optional[str] = None,
51
        add_bos_token: Optional[bool] = False,
baberabb's avatar
baberabb committed
52
        tensor_parallel_size: int = 1,
53
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
54
55
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
56
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
57
        max_batch_size=None,
baberabb's avatar
baberabb committed
58
        max_length: int = None,
59
        max_model_len: int = None,
baberabb's avatar
baberabb committed
60
        seed: int = 1234,
61
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
62
        device: str = "cuda",
63
        data_parallel_size: int = 1,
baberabb's avatar
baberabb committed
64
65
    ):
        super().__init__()
66

67
        if not find_spec("vllm"):
68
            raise Exception(
69
70
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
71
72
            )

baberabb's avatar
baberabb committed
73
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
74
75
76
77
78
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
79
        self.tensor_parallel_size = int(tensor_parallel_size)
80
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
81
82
83
84
85
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
86
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
87
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
88
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
89
90
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
91
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
92
93
94
95
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
96
97
98
99
100
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
101
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
102
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
103
104
        else:
            self.model_args["worker_use_ray"] = True
105
106
107
108
109
110
111
112
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
113
114
115
116
117
118
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
119
        self.add_bos_token = add_bos_token
120

baberabb's avatar
baberabb committed
121
122
123
124
125
126
127
128
129
130
131
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
132
133
134
135
136
137
138
139
140
141
142
143
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
144
145
146
147
148

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
149
150
151
152
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
153
        add_special_tokens=None,
baberabb's avatar
baberabb committed
154
155
        truncation=False,
    ):
baberabb's avatar
baberabb committed
156
        """ """
157
158
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
baberabb's avatar
baberabb committed
159
160
161
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
162
163
164
165
166
167
168
169
170

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
171
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
172
173
174
175
176
177
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
178
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
179
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
180
        else:
baberabb's avatar
baberabb committed
181
            sampling_params = SamplingParams(
182
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
183
            )
184
        if self.data_parallel_size > 1:
185
186
187
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
baberabb's avatar
baberabb committed
188
            inputs = [(self.model_args, sampling_params, req) for req in requests]
baberabb's avatar
baberabb committed
189

190
            with Pool(self.data_parallel_size) as pool:
baberabb's avatar
baberabb committed
191
                results = pool.starmap(run_inference_one_model, inputs)
192
193
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
194
            # flatten results
195
            return undistribute(results)
baberabb's avatar
baberabb committed
196
197
198
199

        outputs = self.model.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
200
            use_tqdm=True if self.batch_size == "auto" else False,
baberabb's avatar
baberabb committed
201
        )
baberabb's avatar
baberabb committed
202
203
        return outputs

baberabb's avatar
baberabb committed
204
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
baberabb's avatar
baberabb committed
205
206
207
208
209
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
210
211
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
212
213
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
214
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

    def generate_until(self, requests: List[Instance]) -> List[str]:
234
        res = []
baberabb's avatar
baberabb committed
235
236
237

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
238
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
239
240
241
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
242
243
244
245
246
247
248
249

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
250
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
251
252
253
254

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
255
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
256
257
258
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
259

260
261
262
263
264
        pbar = tqdm(
            total=len(requests),
            disable=(self.rank != 0),
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
265
        # for each different set of kwargs, we execute all requests, by batch.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
287
                )
288
289
            # add EOS token to stop sequences
            eos = self.tok_decode(self.eot_token_id)
290
            if not until:
291
292
293
                until = [eos]
            else:
                until.append(eos)
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
312

313
314
315
316
317
318
319
320
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
321
322

        pbar.close()
323
324
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
325
326

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
327
328
329
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
330
331
332
333
334
335
336
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

337
338
339
340
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
341
        )
342

343
344
345
346
347
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
348
        for chunk in chunks:
349
            inputs = []
baberabb's avatar
baberabb committed
350
351
352
353
354
355
356
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

357
                inputs.append(inp)
baberabb's avatar
baberabb committed
358
359
                ctxlens.append(ctxlen)

360
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
361

362
363
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
364
365
            ):
                answer = self._parse_logprobs(
366
367
368
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
369
370
371
372
373
374
375
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
376
                pbar.update(1)
baberabb's avatar
baberabb committed
377
378
379
380
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
381
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
382
383
384
        """Process logprobs and tokens.

        :param tokens: list
385
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
386
        :param outputs: RequestOutput
387
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
388
389
390
391
392
393
394
395
396
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

397
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
398
399
        continuation_logprobs_dicts = outputs.prompt_logprobs

baberabb's avatar
baberabb committed
400
        # Calculate continuation_logprobs
401
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
402
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
403
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
404
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
405
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
406
407
408
409
410
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
411
412
413
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
414
415
416
417
418
419
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
420
421

        return continuation_logprobs, is_greedy
422
423
424
425

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
426
427
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
428
429
430
431
432
433
434
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs