translation.py 6.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
NOTE: This file implements translation tasks using datasets from WMT conferences,
provided by sacrebleu. Traditionally they are evaluated with BLEU scores. TER
and CHRF are other options.

We defer citations and descriptions of the many translations tasks used
here to the SacreBLEU repo from which we've obtained the datasets:
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py

Homepage: https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py
"""
12
import pycountry
13
from pprint import pprint
14
15
16
from sacrebleu import sacrebleu
from lm_eval import metrics
from lm_eval.base import Task, rf
Muennighoff's avatar
Muennighoff committed
17
18
19
from typing import List


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
_CITATION = """
@inproceedings{post-2018-call,
    title = "A Call for Clarity in Reporting {BLEU} Scores",
    author = "Post, Matt",
    booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
    month = oct,
    year = "2018",
    address = "Belgium, Brussels",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-6319",
    pages = "186--191",
}
"""


35
36
37
sacrebleu_datasets = sacrebleu.DATASETS


&'s avatar
& committed
38
def create_tasks_from_benchmarks(benchmark_dict):
&'s avatar
& committed
39
    """Creates a dictionary of tasks from a dict
&'s avatar
& committed
40
    :param benchmark_dict: { dataset: [lang_pair, ...], }
&'s avatar
& committed
41
42
43
    :return: {task_name: task}
        e.g. {wmt14-fr-en: Task, wmt16-de-en: Task}
    """
Leo Gao's avatar
Leo Gao committed
44
45
46
47
48
    def version_of(dataset, language_pair):
        if language_pair[-2:] in ["zh", "ja"]:
            return 1 # changed to use jieba/nagisa
        return 0

&'s avatar
& committed
49
    return {
Leo Gao's avatar
Leo Gao committed
50
        f"{dataset}-{language_pair}": create_translation_task(dataset, language_pair, version_of(dataset, language_pair))
&'s avatar
& committed
51
52
53
54
        for dataset, language_pairs in benchmark_dict.items()
        for language_pair in language_pairs
    }

Muennighoff's avatar
Muennighoff committed
55
56
57
58
59
60
########################################
# Language Specifics
########################################

def zh_split(zh_text: List[str]) -> List[str]:
    """Chinese splitting"""
61
    import jieba
Muennighoff's avatar
Muennighoff committed
62
63
64
65
    return [" ".join(jieba.cut(txt.strip())) for txt in zh_text]

def ja_split(ja_text: List[str]) -> List[str]:
    """Japanese splitting"""
66
    import nagisa
Muennighoff's avatar
Muennighoff committed
67
68
69
70
    return [" ".join(nagisa.tagging(txt.strip()).words) for txt in ja_text]

NO_SPACE_LANG = {"zh": zh_split, "ja": ja_split}

&'s avatar
& committed
71
72
73
74
########################################
# Tasks
########################################

Leo Gao's avatar
Leo Gao committed
75
def create_translation_task(dataset, language_pair, version=0):
76
    class TranslationTask(GeneralTranslationTask):
Leo Gao's avatar
Leo Gao committed
77
        VERSION = version
78
79
80
81
82
        def __init__(self):
            super().__init__(dataset, language_pair)
    return TranslationTask

class GeneralTranslationTask(Task):
Leo Gao's avatar
Leo Gao committed
83
    VERSION = 0
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    # e.g. ("wmt14", "fr-en")
    def __init__(self, sacrebleu_dataset, sacrebleu_language_pair=None):
        self.sacrebleu_dataset = sacrebleu_dataset
        self.sacrebleu_language_pair = sacrebleu_language_pair
        self.src_file = self.ref_file = self.src_data = self.ref_data = None

        super().__init__()

    def download(self):
        # This caches in the users home dir automatically
        self.src_file, self.ref_file = \
            sacrebleu.download_test_set(self.sacrebleu_dataset, self.sacrebleu_language_pair)
        self.src_data, self.ref_data = [
            [line.rstrip() for line in sacrebleu.smart_open(file)]
            for file in (self.src_file, self.ref_file)
        ]

    def has_training_docs(self):
        """Whether the task has a training set"""
        # TODO In the future we could be more discerning. Some more recent tests have train and dev sets
        return False

    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return False

    def has_test_docs(self):
        """Whether the task has a test set"""
        return True

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return [{
            "src": src,
            "ref": ref
        } for src, ref in zip(self.src_data, self.ref_data)]

    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
126
127
128
129
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{src_lang} phrase: " + doc["src"] + f"\n{tar_lang} phrase:"
130
131

    def doc_to_target(self, doc):
&'s avatar
& committed
132
        # This shows a single target, though there may be multiple targets in a lang test
Leo Gao's avatar
Leo Gao committed
133
        return " " + doc["ref"] if isinstance(doc["ref"], str) else doc["ref"][0]
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        return rf.greedy_until(ctx, ["\n"])

    def process_results(self, doc, results):
Muennighoff's avatar
Muennighoff committed
149
150
151
152
153
154
        # Add spaces between words for BLEU score calculation of target languages like Chinese
        tar_lang_code = self.sacrebleu_language_pair.split("-")[-1]
        if tar_lang_code in NO_SPACE_LANG:
            doc["ref"] = NO_SPACE_LANG[tar_lang_code]([doc["ref"]])[0]
            results = NO_SPACE_LANG[tar_lang_code](results)

155
156
        # These metrics are corpus-level not sentence level, so we'll hide the
        # results in this dict and compute the corpus score in the aggregate method
&'s avatar
& committed
157
        ref_pred = (doc["ref"], results)
158
        return {
&'s avatar
& committed
159
160
161
            "bleu": ref_pred,
            "chrf": ref_pred,
            "ter": ref_pred,
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "bleu": metrics.bleu,
            "chrf": metrics.chrf,
            "ter": metrics.ter,
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "bleu": True,
            "chrf": True,
            "ter": False,
        }

&'s avatar
& committed
188
189
190
191
192
193
    def __str__(self):
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{self.sacrebleu_dataset.upper()} {src_lang} to {tar_lang} Task"

194
195
196
197
198
199
200
201

########################################
# Util
########################################


def code_to_language(code):
    # key is alpha_2 or alpha_3 depending on the code length
&'s avatar
& committed
202
    language_tuple = pycountry.languages.get(**{f"alpha_{len(code)}": code})
203
    return language_tuple.name