translation.py 5.5 KB
Newer Older
1
import pycountry
2
from pprint import pprint
3
4
5
6
7
8
9
10
11
12
13
14
15
from sacrebleu import sacrebleu
from lm_eval import metrics
from lm_eval.base import Task, rf

"""
This file implements translation tasks using datasets from WMT conferences, provided by sacrebleu.
Traditionally they are evaluated with BLEU scores. TER and CHRF are other options.

See sacrebleu.DATASETS for all available datasets. There are a lot!
"""
sacrebleu_datasets = sacrebleu.DATASETS


&'s avatar
& committed
16
def create_tasks_from_benchmarks(benchmark_dict):
&'s avatar
& committed
17
    """Creates a dictionary of tasks from a dict
&'s avatar
& committed
18
    :param benchmark_dict: { dataset: [lang_pair, ...], }
&'s avatar
& committed
19
20
21
    :return: {task_name: task}
        e.g. {wmt14-fr-en: Task, wmt16-de-en: Task}
    """
&'s avatar
& committed
22
23
24
25
26
27
    return {
        f"{dataset}-{language_pair}": create_translation_task(dataset, language_pair)
        for dataset, language_pairs in benchmark_dict.items()
        for language_pair in language_pairs
    }

&'s avatar
& committed
28
29
30
31
########################################
# Tasks
########################################

32
33
34
35
36
37
38
def create_translation_task(dataset, language_pair):
    class TranslationTask(GeneralTranslationTask):
        def __init__(self):
            super().__init__(dataset, language_pair)
    return TranslationTask

class GeneralTranslationTask(Task):
Leo Gao's avatar
Leo Gao committed
39
    VERSION = 0
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    # e.g. ("wmt14", "fr-en")
    def __init__(self, sacrebleu_dataset, sacrebleu_language_pair=None):
        self.sacrebleu_dataset = sacrebleu_dataset
        self.sacrebleu_language_pair = sacrebleu_language_pair
        self.src_file = self.ref_file = self.src_data = self.ref_data = None

        super().__init__()

    def download(self):
        # This caches in the users home dir automatically
        self.src_file, self.ref_file = \
            sacrebleu.download_test_set(self.sacrebleu_dataset, self.sacrebleu_language_pair)
        self.src_data, self.ref_data = [
            [line.rstrip() for line in sacrebleu.smart_open(file)]
            for file in (self.src_file, self.ref_file)
        ]

    def has_training_docs(self):
        """Whether the task has a training set"""
        # TODO In the future we could be more discerning. Some more recent tests have train and dev sets
        return False

    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return False

    def has_test_docs(self):
        """Whether the task has a test set"""
        return True

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return [{
            "src": src,
            "ref": ref
        } for src, ref in zip(self.src_data, self.ref_data)]

    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
82
83
84
85
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{src_lang} phrase: " + doc["src"] + f"\n{tar_lang} phrase:"
86
87

    def doc_to_target(self, doc):
&'s avatar
& committed
88
        # This shows a single target, though there may be multiple targets in a lang test
Leo Gao's avatar
Leo Gao committed
89
        return " " + doc["ref"] if isinstance(doc["ref"], str) else doc["ref"][0]
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        return rf.greedy_until(ctx, ["\n"])

    def process_results(self, doc, results):
        # These metrics are corpus-level not sentence level, so we'll hide the
        # results in this dict and compute the corpus score in the aggregate method
&'s avatar
& committed
107
        ref_pred = (doc["ref"], results)
108
        return {
&'s avatar
& committed
109
110
111
            "bleu": ref_pred,
            "chrf": ref_pred,
            "ter": ref_pred,
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "bleu": metrics.bleu,
            "chrf": metrics.chrf,
            "ter": metrics.ter,
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "bleu": True,
            "chrf": True,
            "ter": False,
        }

    def fewshot_description(self):
        language_codes = self.sacrebleu_language_pair.split("-")
&'s avatar
& committed
140
141
142
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"Translate these {src_lang} phrases to {tar_lang}."
143

&'s avatar
& committed
144
145
146
147
148
149
    def __str__(self):
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{self.sacrebleu_dataset.upper()} {src_lang} to {tar_lang} Task"

150
151
152
153
154
155
156
157

########################################
# Util
########################################


def code_to_language(code):
    # key is alpha_2 or alpha_3 depending on the code length
&'s avatar
& committed
158
    language_tuple = pycountry.languages.get(**{f"alpha_{len(code)}": code})
159
    return language_tuple.name