race.py 5.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""
RACE: Large-scale ReAding Comprehension Dataset From Examinations
https://arxiv.org/pdf/1704.04683.pdf

RACE is a large-scale reading comprehension dataset with more than 28,000 passages
and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. The dataset
can be served as the training and test sets for machine comprehension.

Homepage: https://www.cs.cmu.edu/~glai1/data/race/
11
12
13
14
15
16
17
"""
import collections
import datasets
import numpy as np
from lm_eval.base import rf
from ..metrics import mean
from . common import HFTask
18

19
20

_CITATION = """
21
22
23
24
25
26
27
@article{lai2017large,
    title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
    author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
    journal={arXiv preprint arXiv:1704.04683},  
    year={2017}
}
"""
Leo Gao's avatar
Leo Gao committed
28
29
30
31
32
33
34
35


class each:
    def __init__(self, f):
        self.f = f

    def __rrshift__(self, other):
        return list(map(self.f, other))
Leo Gao's avatar
Leo Gao committed
36
37


38
class RACE(HFTask):
Leo Gao's avatar
Leo Gao committed
39
    VERSION = 0
Leo Gao's avatar
Leo Gao committed
40
41
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
42
43

    cache = {}
Jon Tow's avatar
Jon Tow committed
44
    letter_to_num = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
Leo Gao's avatar
Leo Gao committed
45

Leo Gao's avatar
Leo Gao committed
46
    assert datasets.__version__ == "1.15.1", "RACE requires datasets==1.15.1!"
Leo Gao's avatar
Leo Gao committed
47

Leo Gao's avatar
Leo Gao committed
48
49
50
51
52
53
54
55
56
57
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def _collate_data(self, set):
Leo Gao's avatar
Leo Gao committed
58
59
        if set in self.cache:
            return self.cache[set]
Leo Gao's avatar
Leo Gao committed
60
61
62
63
64
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
65
        for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            r[item['article']].append(item)
        
        res = list(r.values() >> each(lambda x: {
            'article': x[0]['article'],
            'problems': x >> each(lambda y: {
                'question': y['question'],
                'answer': y['answer'],
                'options': y['options'],
            })
        }))

        self.cache[set] = res
        return res

    def training_docs(self):
        return self._collate_data("train")

    def validation_docs(self):
        return self._collate_data("validation")

    def test_docs(self):
        return self._collate_data("test")

Jon Tow's avatar
Jon Tow committed
89
90
91
92
93
94
95
96
97
    @classmethod
    def get_answer_option(cls, problem):
        answer = cls.letter_to_num[problem['answer']]
        return problem['options'][answer]

    @classmethod
    def last_problem(cls, doc):
        return doc['problems'][-1]

98
    def doc_to_text(self, doc):
Jon Tow's avatar
Jon Tow committed
99
100
        text = 'Article: ' + doc['article'] + '\n\n'
        for problem in doc['problems'][:-1]:
Leo Gao's avatar
Leo Gao committed
101
102
103
104
105
106
            if problem['question'][-6:] == '  _  .':
                text += problem['question'][-5:] + self.get_answer_option(problem) + '\n'
            else:
                question = 'Question: ' + problem['question'] + '\n'
                answer = 'Answer: ' + self.get_answer_option(problem) + '\n'
                text += question + answer
Leo Gao's avatar
Leo Gao committed
107
        text += self.last_problem(doc)['question']
Jon Tow's avatar
Jon Tow committed
108
        return text
Leo Gao's avatar
Leo Gao committed
109

110
    def doc_to_target(self, doc):
Jon Tow's avatar
Jon Tow committed
111
        return " " + self.get_answer_option(self.last_problem(doc))
Leo Gao's avatar
Leo Gao committed
112

Leo Gao's avatar
Leo Gao committed
113
114
115
116
117
118
119
120
121
122
123
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
Jon Tow's avatar
Jon Tow committed
124
125
126
127
128
129
130
        problem = self.last_problem(doc)
        ll_choices = [
            rf.loglikelihood(ctx, " " + problem['options'][i])[0]
            for i in range(4)
        ]
        return ll_choices

Leo Gao's avatar
Leo Gao committed
131
132
133
134
135
136
137
138
139
140
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
Jon Tow's avatar
Jon Tow committed
141
142
143
144
145
        gold = self.letter_to_num[self.last_problem(doc)['answer']]
        pred = np.argmax(results)
        return {
            "acc": int(pred == gold)
        }
Leo Gao's avatar
Leo Gao committed
146
147
148
149
150
151
152

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
Jon Tow's avatar
Jon Tow committed
153
154
155
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
156
157
158
159
160
161
162

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
Jon Tow's avatar
Jon Tow committed
163
164
165
        return {
            "acc": True
        }