quac.py 4.61 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
3
4
"""
QuAC: Question Answering in Context
https://arxiv.org/abs/1808.07036 

5
6
7
8
9
10
11
Question Answering in Context (QuAC) is a dataset for modeling, understanding, and 
participating in information seeking dialog. Data instances consist of an interactive
dialog between two crowd workers: (1) a student who poses a sequence of freeform
questions to learn as much as possible about a hidden Wikipedia text, and (2)
a teacher who answers the questions by providing short excerpts (spans) from the text.

Homepage: https://quac.ai/
Leo Gao's avatar
Leo Gao committed
12
"""
Charles Foster's avatar
Charles Foster committed
13
14
import json
import os
15
from lm_eval.base import Task
Charles Foster's avatar
Charles Foster committed
16
17
18
from ..utils import sh


19
20
21
22
23
24
25
26
27
28
_CITATION = """
@article{choi2018quac,
    title={Quac: Question answering in context},
    author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},
    journal={arXiv preprint arXiv:1808.07036},
    year={2018}
}
"""


Leo Gao's avatar
Leo Gao committed
29
30
31
class QuAC(Task):
    VERSION = 0

Charles Foster's avatar
Charles Foster committed
32
33
34
35
36
    def __init__(self):
        super().__init__()

    def download(self):
        if not os.path.exists('data/quac'):
37
            # TODO: convert to use best_download
Charles Foster's avatar
Charles Foster committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
            sh("""
                mkdir -p data/quac 
                wget https://s3.amazonaws.com/my89public/quac/train_v0.2.json -O data/quac/train_v0.2.json
                wget https://s3.amazonaws.com/my89public/quac/val_v0.2.json -O data/quac/val_v0.2.json
                """)

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def training_docs(self):
        myjson = json.load(open('data/quac/train_v0.2.json'))['data']
        return self.load_doc(myjson)

    def validation_docs(self):
        myjson = json.load(open('data/quac/val_v0.2.json'))['data']    
        return self.load_doc(myjson)

    def test_docs(self):
        raise NotImplementedError("QuAC has no test docs.")
    
    def load_doc(self, myjson):
        docs = []
        for item in myjson:
            title = item['title'] + ' - ' + item['section_title']
            paragraph = item['paragraphs'][0]['context'].replace("CANNOTANSWER", "")
            qas = item['paragraphs'][0]['qas']
            qa_pairs = [(qa['question'], qa['answers'][0]['text']) for qa in qas]
            for (question, answer) in qa_pairs:
                doc = { 'title': title, 'paragraph': paragraph, 'question': question, 'answer': answer }
                docs.append(doc)  
        return docs
    
76
77
78
79
80
    def doc_to_text(self, doc):
        return 'TITLE: ' + doc['title'] + '\n' + 'PARAGRAPH: ' + doc['paragraph'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

    def doc_to_target(self, doc):
        return doc['answer']
Charles Foster's avatar
Charles Foster committed
81

Leo Gao's avatar
Leo Gao committed
82
83
84
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
85

Leo Gao's avatar
Leo Gao committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
Leo Gao's avatar
Leo Gao committed
125
        raise NotImplementedError('Evaluation not implemented')