""" QuAC: Question Answering in Context https://arxiv.org/abs/1808.07036 Question Answering in Context (QuAC) is a dataset for modeling, understanding, and participating in information seeking dialog. Data instances consist of an interactive dialog between two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts (spans) from the text. Homepage: https://quac.ai/ """ import json import os from lm_eval.base import Task from ..utils import sh _CITATION = """ @article{choi2018quac, title={Quac: Question answering in context}, author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1808.07036}, year={2018} } """ class QuAC(Task): VERSION = 0 def __init__(self): super().__init__() def download(self): if not os.path.exists('data/quac'): # TODO: convert to use best_download sh(""" mkdir -p data/quac wget https://s3.amazonaws.com/my89public/quac/train_v0.2.json -O data/quac/train_v0.2.json wget https://s3.amazonaws.com/my89public/quac/val_v0.2.json -O data/quac/val_v0.2.json """) def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): myjson = json.load(open('data/quac/train_v0.2.json'))['data'] return self.load_doc(myjson) def validation_docs(self): myjson = json.load(open('data/quac/val_v0.2.json'))['data'] return self.load_doc(myjson) def test_docs(self): raise NotImplementedError("QuAC has no test docs.") def load_doc(self, myjson): docs = [] for item in myjson: title = item['title'] + ' - ' + item['section_title'] paragraph = item['paragraphs'][0]['context'].replace("CANNOTANSWER", "") qas = item['paragraphs'][0]['qas'] qa_pairs = [(qa['question'], qa['answers'][0]['text']) for qa in qas] for (question, answer) in qa_pairs: doc = { 'title': title, 'paragraph': paragraph, 'question': question, 'answer': answer } docs.append(doc) return docs def doc_to_text(self, doc): return 'TITLE: ' + doc['title'] + '\n' + 'PARAGRAPH: ' + doc['paragraph'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: ' def doc_to_target(self, doc): return doc['answer'] def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')