drop.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
https://aclanthology.org/attachments/N19-1246.Supplementary.pdf

DROP is a QA dataset which tests comprehensive understanding of paragraphs. In 
this crowdsourced, adversarially-created, 96k question-answering benchmark, a 
system must resolve multiple references in a question, map them onto a paragraph,
and perform discrete operations over them (such as addition, counting, or sorting).

Homepage: https://allenai.org/data/drop

Acknowledgement: This implementation is based on the official evaluation for `DROP`:
https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
"""
Anish Thite's avatar
Anish Thite committed
15
import json
Jon Tow's avatar
Jon Tow committed
16
17
import numpy as np
import re
18
import string
Jon Tow's avatar
Jon Tow committed
19
20
21
22
from best_download import download_file
from scipy.optimize import linear_sum_assignment
from lm_eval.base import Task, rf
from lm_eval.metrics import mean
Anish Thite's avatar
Anish Thite committed
23
from pathlib import Path
Jon Tow's avatar
Jon Tow committed
24
25
from zipfile import ZipFile

26

Jonathan Tow's avatar
Jonathan Tow committed
27
_CITATION = """
28
29
30
31
32
33
34
35
36
37
38
@misc{dua2019drop,
    title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, 
    author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
    year={2019},
    eprint={1903.00161},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""


silentv0x's avatar
silentv0x committed
39
_ARTICLES = re.compile(r"\b(a|an|the)\b", re.UNICODE)
Anish Thite's avatar
Anish Thite committed
40

41

42
class DROP(Task):
Leo Gao's avatar
Leo Gao committed
43
    VERSION = 1
44
    DATASET_PATH = Path("data/drop")
Jon Tow's avatar
Jon Tow committed
45
46

    def download(self):
47
48
        if self.DATASET_PATH.exists():
            return
Jun Shern Chan's avatar
Jun Shern Chan committed
49
        Path.mkdir(self.DATASET_PATH, parents=True)
50
51
52
        url = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
        checksum = "39d2278a29fd729de301b111a45f434c24834f40df8f4ff116d864589e3249d6"
        zip_path = self.DATASET_PATH / "drop_dataset.zip"
53
        download_file(url, local_file=str(zip_path), expected_checksum=checksum)
54
55
        with ZipFile(zip_path, "r") as zip:
            zip.extractall(self.DATASET_PATH)
56

Anish Thite's avatar
Anish Thite committed
57
58
    def has_training_docs(self):
        return True
Jon Tow's avatar
Jon Tow committed
59

Anish Thite's avatar
Anish Thite committed
60
61
62
63
64
65
    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

Jon Tow's avatar
Jon Tow committed
66
67
68
69
    def _load_docs(self, docs):
        for doc in docs:
            for qa in doc["qa_pairs"]:
                yield {
Jon Tow's avatar
Jon Tow committed
70
                    "id": qa["query_id"],
Jon Tow's avatar
Jon Tow committed
71
72
                    "passage": doc["passage"],
                    "question": qa["question"],
silentv0x's avatar
silentv0x committed
73
                    "answers": self.get_answers(qa),
Jon Tow's avatar
Jon Tow committed
74
                }
Anish Thite's avatar
Anish Thite committed
75

Jon Tow's avatar
Jon Tow committed
76
    @classmethod
silentv0x's avatar
silentv0x committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def get_answers(cls, qa):
        answers = []
        answers_set = set()

        candidates = [qa["answer"]] + qa.get("validated_answers", [])
        for candidate in candidates:
            answer = cls.parse_answer(candidate)
            if answer in answers_set:
                continue
            answers_set.add(answer)
            answers.append(answer)

        return answers

    @classmethod
    def parse_answer(cls, answer):
        # NOTE: Everything is returned as a tuple for uniformity and hashability.
        if answer["number"] != "":
            return (str(answer["number"]),)
        if answer["spans"] != []:
            return tuple(answer["spans"])
        return (" ".join([answer["date"]["day"],
                          answer["date"]["month"],
                          answer["date"]["year"]]).strip(),)
Jon Tow's avatar
Jon Tow committed
101
102

    def training_docs(self):
103
        docs = json.load(open(self.DATASET_PATH / "drop_dataset" / "drop_dataset_train.json"))
Jon Tow's avatar
Jon Tow committed
104
        return self._load_docs([docs[k] for k in docs.keys()])
Anish Thite's avatar
Anish Thite committed
105
106

    def validation_docs(self):
107
        docs = json.load(open(self.DATASET_PATH / "drop_dataset" / "drop_dataset_dev.json"))
Jon Tow's avatar
Jon Tow committed
108
109
110
111
112
113
        return self._load_docs([docs[k] for k in docs.keys()])

    def doc_to_text(self, doc):
        return f"Passage: {doc['passage']}\nQuestion: {doc['question']}\nAnswer:"

    def doc_to_target(self, doc):
silentv0x's avatar
silentv0x committed
114
        return " " + ", ".join(doc["answers"][0])
Anish Thite's avatar
Anish Thite committed
115

Leo Gao's avatar
Leo Gao committed
116
    def construct_requests(self, doc, ctx):
Jon Tow's avatar
Jon Tow committed
117
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
118
        Requests which will be sent to the LM.
119

Jon Tow's avatar
Jon Tow committed
120
        :param doc:
Leo Gao's avatar
Leo Gao committed
121
            The document as returned from training_docs, validation_docs, or test_docs.
Jon Tow's avatar
Jon Tow committed
122
        :param ctx: str
Jon Tow's avatar
Jon Tow committed
123
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
124
            language description, as well as the few shot examples, and the question
Jon Tow's avatar
Jon Tow committed
125
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
126
        """
silentv0x's avatar
silentv0x committed
127
        conts = [rf.greedy_until(ctx, ["."])]
Jon Tow's avatar
Jon Tow committed
128
129
        return conts

Leo Gao's avatar
Leo Gao committed
130
    def process_results(self, doc, results):
Jon Tow's avatar
Jon Tow committed
131
132
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
133
134
        the metric for that one document

Jon Tow's avatar
Jon Tow committed
135
        :param doc:
Jon Tow's avatar
Jon Tow committed
136
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
137
138
139
        :param results:
            The results of the requests created in construct_requests.
        """
140
        preds, golds = results, doc["answers"]
silentv0x's avatar
silentv0x committed
141
142
143
144
145
146
147
        max_em = 0
        max_f1 = 0
        for gold_answer in golds:
            exact_match, f1_score = self.get_metrics(preds, gold_answer)
            if gold_answer[0].strip():
                max_em = max(max_em, exact_match)
                max_f1 = max(max_f1, f1_score)
Jon Tow's avatar
Jon Tow committed
148
        return {
silentv0x's avatar
silentv0x committed
149
150
            "em": max_em,
            "f1": max_f1
Jon Tow's avatar
Jon Tow committed
151
        }
Jon Tow's avatar
Jon Tow committed
152

silentv0x's avatar
silentv0x committed
153
154
155
156
157
158
159
    def get_metrics(self, predicted, gold):
        """
        Takes a predicted answer and a gold answer (that are both either a string or a list of
        strings), and returns exact match and the DROP F1 metric for the prediction.  If you are
        writing a script for evaluating objects in memory (say, the output of predictions during
        validation, or while training), this is the function you want to call, after using
        :func:`answer_json_to_strings` when reading the gold answer from the released data file.
160
        """
silentv0x's avatar
silentv0x committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        predicted_bags = self._answer_to_bags(predicted)
        gold_bags = self._answer_to_bags(gold)

        if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]):
            exact_match = 1.0
        else:
            exact_match = 0.0

        f1_per_bag = self._align_bags(predicted_bags[1], gold_bags[1])
        f1 = np.mean(f1_per_bag)
        f1 = round(f1, 2)
        return exact_match, f1

    def _answer_to_bags(self, answer):
        if isinstance(answer, (list, tuple)):
            raw_spans = answer
        else:
            raw_spans = [answer]
        normalized_spans = []
        token_bags = []
        for raw_span in raw_spans:
            normalized_span = self._normalize(raw_span)
            normalized_spans.append(normalized_span)
            token_bags.append(set(normalized_span.split()))
        return normalized_spans, token_bags

    def _align_bags(self, predicted, gold):
        """
        Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
        between them and gets maximum metric values over all the answers.
        """
        scores = np.zeros([len(gold), len(predicted)])
        for gold_index, gold_item in enumerate(gold):
            for pred_index, pred_item in enumerate(predicted):
                if self._match_numbers_if_present(gold_item, pred_item):
                    scores[gold_index, pred_index] = self._compute_f1(pred_item, gold_item)
Jon Tow's avatar
Jon Tow committed
197
        row_ind, col_ind = linear_sum_assignment(-scores)
silentv0x's avatar
silentv0x committed
198
199

        max_scores = np.zeros([max(len(gold), len(predicted))])
Jon Tow's avatar
Jon Tow committed
200
201
202
203
        for row, column in zip(row_ind, col_ind):
            max_scores[row] = max(max_scores[row], scores[row, column])
        return max_scores

silentv0x's avatar
silentv0x committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def _compute_f1(self, predicted_bag, gold_bag):
        intersection = len(gold_bag.intersection(predicted_bag))
        if not predicted_bag:
            precision = 1.0
        else:
            precision = intersection / float(len(predicted_bag))
        if not gold_bag:
            recall = 1.0
        else:
            recall = intersection / float(len(gold_bag))
        f1 = (
            (2 * precision * recall) / (precision + recall)
            if not (precision == 0.0 and recall == 0.0)
            else 0.0
        )
Jon Tow's avatar
Jon Tow committed
219
220
        return f1

silentv0x's avatar
silentv0x committed
221
222
223
224
225
226
227
228
229
230
    def _match_numbers_if_present(self, gold_bag, predicted_bag):
        gold_numbers = set()
        predicted_numbers = set()
        for word in gold_bag:
            if self._is_number(word):
                gold_numbers.add(word)
        for word in predicted_bag:
            if self._is_number(word):
                predicted_numbers.add(word)
        if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
231
232
233
234
235
236
237
238
239
            return True
        return False

    def _is_number(self, text):
        try:
            float(text)
            return True
        except ValueError:
            return False
Jon Tow's avatar
Jon Tow committed
240

silentv0x's avatar
silentv0x committed
241
242
    def _remove_articles(self, text):
        return _ARTICLES.sub(" ", text)
243

silentv0x's avatar
silentv0x committed
244
245
    def _white_space_fix(self, text):
        return " ".join(text.split())
246

silentv0x's avatar
silentv0x committed
247
248
249
250
251
252
    def _remove_punc(self, text):
        exclude = set(string.punctuation)
        if not self._is_number(text):
            return "".join(ch for ch in text if ch not in exclude)
        else:
            return text
253

silentv0x's avatar
silentv0x committed
254
255
    def _fix_number(self, text):
        return str(float(text)) if self._is_number(text) else text
256

silentv0x's avatar
Bug fix  
silentv0x committed
257
    def _tokenize(self, text):
silentv0x's avatar
silentv0x committed
258
        return re.split(" |-", text)
259

silentv0x's avatar
silentv0x committed
260
    def _normalize(self, answer):
261
        tokens = [
silentv0x's avatar
silentv0x committed
262
263
            self._white_space_fix(self._remove_articles(self._fix_number(self._remove_punc(token.lower()))))
            for token in self._tokenize(answer)
264
        ]
Jon Tow's avatar
Fixes  
Jon Tow committed
265
        tokens = [token for token in tokens if token.strip()]
Jon Tow's avatar
Jon Tow committed
266
267
        normalized = " ".join(tokens).strip()
        return normalized
Leo Gao's avatar
Leo Gao committed
268
269
270
271

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
Jon Tow's avatar
Jon Tow committed
272
273
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
Leo Gao's avatar
Leo Gao committed
274
        """
Jon Tow's avatar
Jon Tow committed
275
276
277
278
        return {
            "em": mean,
            "f1": mean
        }
Leo Gao's avatar
Leo Gao committed
279
280
281
282

    def higher_is_better(self):
        """
        :returns: {str: bool}
Jon Tow's avatar
Jon Tow committed
283
284
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
Leo Gao's avatar
Leo Gao committed
285
        """
Jon Tow's avatar
Jon Tow committed
286
287
288
289
        return {
            "em": True,
            "f1": True
        }