task.py 32.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
21
from lm_eval.api.metrics import (
lintangsutawika's avatar
lintangsutawika committed
22
23
24
25
26
27
28
29
30
    METRIC_REGISTRY,
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
    get_metric,
    get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
31

lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.logger import eval_logger
33
from lm_eval.prompts import get_prompt
34
35
36
37
38
39
from lm_eval.filters import build_filter_ensemble


@dataclass
class TaskConfig(dict):

40
41
    task: str = None
    group: str = None
lintangsutawika's avatar
lintangsutawika committed
42
    reference: str = None
lintangsutawika's avatar
lintangsutawika committed
43
44
45
    task_name: str = (
        None  # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
    )
lintangsutawika's avatar
lintangsutawika committed
46
    base_task: str = None
47
48
49
50
51
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
52
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
53

54
    template_aliases: str = None
55
56
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
57

58
59
    num_fewshot: int = 0
    batch_size: int = 1
60
61
    repeats: int = 1

62
63
64
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
65
    generation_kwargs: dict = None
66
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
67
    filter_list: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
68
69
70
    normalization: str = (
        None  # TODO: add length-normalization of various types, mutual info
    )
71
72
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
73
    use_prompt: str = None
74

lintangsutawika's avatar
lintangsutawika committed
75
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
76

77
78
79
80
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
lintangsutawika's avatar
lintangsutawika committed
81
        if self.template_aliases is not None:
82
83
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
84

85
86
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
87

88
89
90
91
92
93
            if type(self.gold_alias) == str:
                self.gold_alias = self.template_aliases + self.doc_to_target
        
        if not self.generation_kwargs:
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
110

111
112
113
114
115
116
117
118
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
154
        self._config = TaskConfig(**config) if config else TaskConfig()
155
156
157

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
158
            for name, components in self._config.get(
159
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
160
            ):
161
162
163
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
164
165
166
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

237
238
239
240
241
242
243
244
245
246
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
247
            eval_logger.warning(
248
                "has_training_docs and has_validation_docs are False"
249
                ", using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
250
            )
251
252
            return self.test_docs()

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

291
    def build_all_requests(self, limit=None, rank=None, world_size=None):
292
293
294
295
296
297
298
299
300
301
302
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
303
304
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
305
        ):
306
            # sample fewshot context #TODO: need to offset doc_id by rank now!
307
308
309
310
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
311
312
313
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
314
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
315
            )
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
341
            The number of times each instance in a dataset is inferred on. Defaults to 1,
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
377
378
379
380
381
382
383
384
385
386
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
409
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
410
411

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
436
437
438
439
440
441
442
443
444
445
446
447
448

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

        for f in self._filters:
            f.apply(self._instances)


class ConfigurableTask(Task):

    VERSION = "2.0"
449
    OUTPUT_TYPE = None
450
    CONFIG = None
451
452
453
454

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
455
        # Get pre-configured attributes
456
        self._config = self.CONFIG
457

458
459
        # Use new configurations if there was no preconfiguration
        if self._config is None:
460
            self._config = TaskConfig(**config)
461
462
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
463
            if config is not None:
464
                self._config.__dict__.update(config)
465

466
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
467
468
469
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
470
471
472
473

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

474
475
476
477
478
479
480
481
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
482
            self._metric_kwargs = {}
483
484
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
485
            for metric_config in self._config.metric_list:
486

lintangsutawika's avatar
lintangsutawika committed
487
488
489
490
491
492
493
494
                metric_name = metric_config["metric"]
                aggregation = metric_config["aggregation"]
                higher_is_better = metric_config["higher_is_better"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
495

lintangsutawika's avatar
lintangsutawika committed
496
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
haileyschoelkopf's avatar
haileyschoelkopf committed
497

lintangsutawika's avatar
lintangsutawika committed
498
499
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
500
501
502
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
                    ]
lintangsutawika's avatar
lintangsutawika committed
503
                else:
504
                    self._higher_is_better[metric_name] = higher_is_better
lintangsutawika's avatar
lintangsutawika committed
505
506
507
508
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
509

lintangsutawika's avatar
lintangsutawika committed
510
                    except Exception:
lintangsutawika's avatar
lintangsutawika committed
511
512
513
514
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
515
516
517
518
519
520

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

        self._filters = []
lintangsutawika's avatar
lintangsutawika committed
521
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
522
523
524
525
526
527
528
529
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
530
531
532
                        }
                        components.append([function["function"], kwargs])

533
534
                    filter_pipeline = build_filter_ensemble(filter_name, components)      
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
535
536
        else:
            self._filters = [
lintangsutawika's avatar
lintangsutawika committed
537
                build_filter_ensemble("take_first", [["take_first", None]])
lintangsutawika's avatar
lintangsutawika committed
538
            ]
539
540

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
541
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
542
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
543
544
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
545
546
547
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
548
549
550
551
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
            )  # TODO: pass the correct docs in here
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

583
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
584
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
lintangsutawika's avatar
lintangsutawika committed
585
            eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
586
                "num_fewshot > 0 but fewshot_split is None. "
lintangsutawika's avatar
lintangsutawika committed
587
                "using preconfigured rule."
lintangsutawika's avatar
lintangsutawika committed
588
            )
589
590
            return super().fewshot_docs()

lintangsutawika's avatar
lintangsutawika committed
591
        elif self._config.fewshot_split is not None:
592
593
            return self.dataset[self._config.fewshot_split]

594
595
596
597
598
599
600
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

601
602
603
604
605
606
607
608
609
610
611
612
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
613
614
615

        if self.prompt is not None:
            doc_to_text = self.prompt
616
617
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
618

619
620
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
621
        elif callable(doc_to_text):
622
623
624
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
625
        else:
626
            print(type(doc_to_text))
627
            raise TypeError
628
629

    def doc_to_target(self, doc):
630
631
632

        if self.prompt is not None:
            doc_to_target = self.prompt
633
634
635
        else:
            doc_to_target = self._config.doc_to_target

636
637
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
638
        elif callable(doc_to_target):
639
640
641
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
642
643
        else:
            raise TypeError
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def gold_alias(self, doc):
        # TODO: reevaluate if we need this. implemented to have a 
        # processed version of answer to put into gsm8k exact_match scoring as ref.
        if self._config.gold_alias:
            doc_to_target = self._config.gold_alias
        else:
            doc_to_target = self._config.doc_to_target

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

662
663
    def construct_requests(self, doc, ctx, **kwargs):

664
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
665
            arguments = (ctx, self.doc_to_target(doc))
666
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
667
            arguments = (self.doc_to_target(doc),)
668
        elif self.OUTPUT_TYPE == "multiple_choice":
669
670
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
671
672
673
674
675
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
676
            request_list = [
677
678
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
679
                    doc=doc,
680
                    arguments=(ctx, " {}".format(choice)),
681
                    idx=i,
682
683
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
684
                for i, choice in enumerate(choices)
685
            ]
686
687
688
689
690
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
691
                # here mutual info refers to calculating
692
693
694
695
696
697
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
698
                            doc=doc,
699
700
701
702
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
703
                        for i, choice in enumerate(choices)
704
705
706
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
707

708
        elif self.OUTPUT_TYPE == "greedy_until":
709
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
710
711

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
712
713
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
714
715
716
717

    def process_results(self, doc, results):

        result_dict = {}
718
719
720
721
722
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
            result_dict = {"perplexity": ll, "accuracy": int(is_greedy)}
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
723
724
725
726
727
728
729
730
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
731
        elif self.OUTPUT_TYPE == "multiple_choice":
lintangsutawika's avatar
lintangsutawika committed
732
733
734
            lls = [
                res[0] for res in results
            ]  # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
735
            gold = int(self.doc_to_target(doc))
736
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
737
738
739
740
741
742
743
744
745
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
            if (
                2 * len(choices) == len(lls)
                and "acc_mutual_info" in self._metric_list.keys()
            ):
746
747
748
749
750
751
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
752
753

            acc = 1.0 if np.argmax(lls) == gold else 0.0
754
755
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
756
757
758
759

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
760
761
762
763
764
765
            }

            # TODO: set which normalization metrics should be reported, and calculate them

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
766
767
768
769
                is_greedy = [
                    res[1] for res in results
                ]  # take only the `is_greedy` results
                is_greedy = is_greedy[gold]  # take value for the gold answer
770
771
772
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
lintangsutawika's avatar
lintangsutawika committed
773
774
775
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
776
777
778
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

779
780
781
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
782
                gold = self.gold_alias(doc)
783
784
785
786
787
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
788
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
789
                )
790

791
                result_dict[key] = _dict[key]
792
        else:
lintangsutawika's avatar
lintangsutawika committed
793
794
795
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'",
796
            )
797
798
799
800
801
802
803

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
804
        return self._higher_is_better
805
806
807
808
809
810
811
812
813
814


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
815
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
816
817
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
818
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
819
                doc=doc,
820
                arguments=(ctx, " {}".format(choice)),
821
                idx=i,
822
823
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
824
825
            for i, choice in enumerate(doc["choices"])
        ]
826
827

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
828
829
830
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
855
class PerplexityTask(Task):
856
857
858
859
860
861
862
863
864
865

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
866
    def fewshot_context(self, doc, num_fewshot, rnd=None):
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
895
896
897
898
899
900
901
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
902
903
904

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
905
906
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))