squad.py 6.2 KB
Newer Older
1
import datasets
2
3
4
from math import exp
from lm_eval.base import rf
from lm_eval.metrics import f1_score, mean
5
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
6
from functools import partial
Leo Gao's avatar
Leo Gao committed
7
from packaging import version
Leo Gao's avatar
Leo Gao committed
8
9
10
11
12
13
14
15
16
17
18
19


def _squad_metric(predictions, references):
    squad_metric = datasets.load_metric("squad_v2")
    return squad_metric.compute(predictions=predictions, references=references)


def _squad_agg(key, items):
    predictions, references = zip(*items)

    return _squad_metric(predictions=predictions, references=references)[key]

Charles Foster's avatar
Charles Foster committed
20

Leo Gao's avatar
Leo Gao committed
21
class SQuAD2(HFTask):
Leo Gao's avatar
Leo Gao committed
22
    VERSION = 1
Charles Foster's avatar
Charles Foster committed
23
24
25
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

Leo Gao's avatar
Leo Gao committed
26
27
28
    # HF changed squad on us so we have to make sure we aren't running the old one
    assert version.parse(datasets.__version__) >= version.parse("1.11.0"), "datasets v1.11.0 or later required for SQuAD"

Charles Foster's avatar
Charles Foster committed
29
30
31
32
33
34
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

35
36
37
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
38
    def training_docs(self):
39
        return self.data["train"]
Charles Foster's avatar
Charles Foster committed
40
41

    def validation_docs(self):
42
        return self.data["validation"]
Charles Foster's avatar
Charles Foster committed
43
44

    def fewshot_description(self):
45
46
        # TODO: figure out description
        return ""
Charles Foster's avatar
Charles Foster committed
47

48
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
49
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Question: ' + doc['question'] + '\n\n' + 'Answer:'
50
51
52
53
54
55
56

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
57
        return " " + answer
Charles Foster's avatar
Charles Foster committed
58

Leo Gao's avatar
Leo Gao committed
59
60
61
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
62

Leo Gao's avatar
Leo Gao committed
63
64
65
66
67
68
69
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
70
        continuation = rf.greedy_until(ctx, ['\n'])
71
        is_unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
72
        return continuation, is_unanswerable
Leo Gao's avatar
Leo Gao committed
73
74
75
76
77
78
79
80
81
82
83
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
Leo Gao's avatar
Leo Gao committed
84
        continuation, (logprob_unanswerable, _) = results
85

86
87
        no_answer_probability = exp(logprob_unanswerable)
        
Leo Gao's avatar
Leo Gao committed
88
        predictions = {
89
            'id': doc['id'],
Leo Gao's avatar
Leo Gao committed
90
            'prediction_text': continuation,
91
            'no_answer_probability': no_answer_probability,
Leo Gao's avatar
Leo Gao committed
92
        }
93

Leo Gao's avatar
Leo Gao committed
94
        references = {
95
96
            'id': doc['id'],
            'answers': doc['answers'],
Leo Gao's avatar
Leo Gao committed
97
        }
98

Leo Gao's avatar
Leo Gao committed
99
100
101
102
103
104
105
106
107
108
        return { 
            'exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'f1': (predictions, references), #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
            'best_exact': (predictions, references), # Best exact match (with varying threshold)
            'best_f1': (predictions, references), # Best F1 (with varying threshold)
        }
Leo Gao's avatar
Leo Gao committed
109
110
111
112
113
114
115

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
116
        return { 
Leo Gao's avatar
Leo Gao committed
117
118
119
120
121
122
123
124
            'exact': partial(_squad_agg, 'exact'), # Exact match (the normalized answer exactly match the gold answer)
            'f1': partial(_squad_agg, 'f1'), #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': partial(_squad_agg, 'HasAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': partial(_squad_agg, 'HasAns_f1'), # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': partial(_squad_agg, 'NoAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': partial(_squad_agg, 'NoAns_f1'), # The F-score of predicted tokens versus the gold answer
            'best_exact': partial(_squad_agg, 'best_exact'), # Best exact match (with varying threshold)
            'best_f1': partial(_squad_agg, 'best_f1'), # Best F1 (with varying threshold)
125
        }
Leo Gao's avatar
Leo Gao committed
126
127
128
129
130
131
132

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
133
134
135
136
137
138
139
140
141
142
        return { 
            'exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'f1': True, #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'best_exact': True, # Best exact match (with varying threshold)
            'best_f1': True, # Best F1 (with varying threshold)
        }