translation.py 7.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
NOTE: This file implements translation tasks using datasets from WMT conferences,
provided by sacrebleu. Traditionally they are evaluated with BLEU scores. TER
and CHRF are other options.

We defer citations and descriptions of the many translations tasks used
here to the SacreBLEU repo from which we've obtained the datasets:
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py

Homepage: https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py
"""
12
import pycountry
13
from pprint import pprint
14
15
16
from sacrebleu import sacrebleu
from lm_eval import metrics
from lm_eval.base import Task, rf
Muennighoff's avatar
Muennighoff committed
17
18
from typing import List

jon-tow's avatar
jon-tow committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
try:
    import nagisa

    HAS_NAGISA = True
except ImportError:
    HAS_NAGISA = False

try:
    import jieba

    HAS_JIEBA = True
except ImportError:
    HAS_JIEBA = False

Muennighoff's avatar
Muennighoff committed
33

34
35
36
37
38
39
40
41
42
43
44
45
_CITATION = """
@inproceedings{post-2018-call,
    title = "A Call for Clarity in Reporting {BLEU} Scores",
    author = "Post, Matt",
    booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
    month = oct,
    year = "2018",
    address = "Belgium, Brussels",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-6319",
    pages = "186--191",
}
46
47
"""

48

49
50
51
sacrebleu_datasets = sacrebleu.DATASETS


&'s avatar
& committed
52
def create_tasks_from_benchmarks(benchmark_dict):
&'s avatar
& committed
53
    """Creates a dictionary of tasks from a dict
&'s avatar
& committed
54
    :param benchmark_dict: { dataset: [lang_pair, ...], }
&'s avatar
& committed
55
56
57
    :return: {task_name: task}
        e.g. {wmt14-fr-en: Task, wmt16-de-en: Task}
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
58

Leo Gao's avatar
Leo Gao committed
59
60
    def version_of(dataset, language_pair):
        if language_pair[-2:] in ["zh", "ja"]:
Fabrizio Milo's avatar
Fabrizio Milo committed
61
            return 1  # changed to use jieba/nagisa
Leo Gao's avatar
Leo Gao committed
62
63
        return 0

&'s avatar
& committed
64
    return {
Fabrizio Milo's avatar
Fabrizio Milo committed
65
66
67
        f"{dataset}-{language_pair}": create_translation_task(
            dataset, language_pair, version_of(dataset, language_pair)
        )
&'s avatar
& committed
68
69
70
71
        for dataset, language_pairs in benchmark_dict.items()
        for language_pair in language_pairs
    }

Fabrizio Milo's avatar
Fabrizio Milo committed
72

Muennighoff's avatar
Muennighoff committed
73
74
75
76
########################################
# Language Specifics
########################################

Fabrizio Milo's avatar
Fabrizio Milo committed
77

Muennighoff's avatar
Muennighoff committed
78
79
def zh_split(zh_text: List[str]) -> List[str]:
    """Chinese splitting"""
80
    import jieba
Fabrizio Milo's avatar
Fabrizio Milo committed
81

jon-tow's avatar
jon-tow committed
82
83
84
85
86
87
    if not HAS_JIEBA:
        raise ImportError(
            "Chinese text splitting requires the `jieba` package. "
            "Please install it with:\npip install jieba"
        )

Muennighoff's avatar
Muennighoff committed
88
89
    return [" ".join(jieba.cut(txt.strip())) for txt in zh_text]

Fabrizio Milo's avatar
Fabrizio Milo committed
90

Muennighoff's avatar
Muennighoff committed
91
92
def ja_split(ja_text: List[str]) -> List[str]:
    """Japanese splitting"""
jon-tow's avatar
jon-tow committed
93
94
95
96
97
    if not HAS_NAGISA:
        raise ImportError(
            "Japanese text splitting requires the `nagisa` package. "
            "Please install it with:\npip install nagisa"
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
98

Muennighoff's avatar
Muennighoff committed
99
100
    return [" ".join(nagisa.tagging(txt.strip()).words) for txt in ja_text]

Fabrizio Milo's avatar
Fabrizio Milo committed
101

Muennighoff's avatar
Muennighoff committed
102
103
NO_SPACE_LANG = {"zh": zh_split, "ja": ja_split}

&'s avatar
& committed
104
105
106
107
########################################
# Tasks
########################################

Fabrizio Milo's avatar
Fabrizio Milo committed
108

Leo Gao's avatar
Leo Gao committed
109
def create_translation_task(dataset, language_pair, version=0):
110
    class TranslationTask(GeneralTranslationTask):
Leo Gao's avatar
Leo Gao committed
111
        VERSION = version
Fabrizio Milo's avatar
Fabrizio Milo committed
112

113
114
        def __init__(self):
            super().__init__(dataset, language_pair)
Fabrizio Milo's avatar
Fabrizio Milo committed
115

116
117
    return TranslationTask

Fabrizio Milo's avatar
Fabrizio Milo committed
118

119
class GeneralTranslationTask(Task):
Leo Gao's avatar
Leo Gao committed
120
    VERSION = 0
121
122
123
124
125
126
127
128
129

    # e.g. ("wmt14", "fr-en")
    def __init__(self, sacrebleu_dataset, sacrebleu_language_pair=None):
        self.sacrebleu_dataset = sacrebleu_dataset
        self.sacrebleu_language_pair = sacrebleu_language_pair
        self.src_file = self.ref_file = self.src_data = self.ref_data = None

        super().__init__()

Jon Tow's avatar
Jon Tow committed
130
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
131
        # This caches in the users home dir automatically
Fabrizio Milo's avatar
Fabrizio Milo committed
132
133
134
        self.src_file, self.ref_file = sacrebleu.download_test_set(
            self.sacrebleu_dataset, self.sacrebleu_language_pair
        )
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        self.src_data, self.ref_data = [
            [line.rstrip() for line in sacrebleu.smart_open(file)]
            for file in (self.src_file, self.ref_file)
        ]

    def has_training_docs(self):
        """Whether the task has a training set"""
        # TODO In the future we could be more discerning. Some more recent tests have train and dev sets
        return False

    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return False

    def has_test_docs(self):
        """Whether the task has a test set"""
        return True

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
158
159
160
        return [
            {"src": src, "ref": ref} for src, ref in zip(self.src_data, self.ref_data)
        ]
161
162

    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
163
164
165
166
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{src_lang} phrase: " + doc["src"] + f"\n{tar_lang} phrase:"
167

168
169
170
171
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
jon-tow's avatar
jon-tow committed
172
        return doc["src"]
173

174
    def doc_to_target(self, doc):
&'s avatar
& committed
175
        # This shows a single target, though there may be multiple targets in a lang test
Leo Gao's avatar
Leo Gao committed
176
        return " " + doc["ref"] if isinstance(doc["ref"], str) else doc["ref"][0]
177
178

    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
179
        """Uses RequestFactory to construct Requests and returns an iterable of
180
181
182
183
184
185
186
187
188
189
190
191
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        return rf.greedy_until(ctx, ["\n"])

    def process_results(self, doc, results):
Muennighoff's avatar
Muennighoff committed
192
193
194
195
196
197
        # Add spaces between words for BLEU score calculation of target languages like Chinese
        tar_lang_code = self.sacrebleu_language_pair.split("-")[-1]
        if tar_lang_code in NO_SPACE_LANG:
            doc["ref"] = NO_SPACE_LANG[tar_lang_code]([doc["ref"]])[0]
            results = NO_SPACE_LANG[tar_lang_code](results)

198
199
        # These metrics are corpus-level not sentence level, so we'll hide the
        # results in this dict and compute the corpus score in the aggregate method
&'s avatar
& committed
200
        ref_pred = (doc["ref"], results)
201
        return {
&'s avatar
& committed
202
203
204
            "bleu": ref_pred,
            "chrf": ref_pred,
            "ter": ref_pred,
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "bleu": metrics.bleu,
            "chrf": metrics.chrf,
            "ter": metrics.ter,
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "bleu": True,
            "chrf": True,
            "ter": False,
        }

&'s avatar
& committed
231
232
233
234
235
236
    def __str__(self):
        language_codes = self.sacrebleu_language_pair.split("-")
        src_lang = code_to_language(language_codes[0])
        tar_lang = code_to_language(language_codes[1])
        return f"{self.sacrebleu_dataset.upper()} {src_lang} to {tar_lang} Task"

237
238
239
240
241
242
243
244

########################################
# Util
########################################


def code_to_language(code):
    # key is alpha_2 or alpha_3 depending on the code length
&'s avatar
& committed
245
    language_tuple = pycountry.languages.get(**{f"alpha_{len(code)}": code})
246
    return language_tuple.name