flash_fwd_kernel.h 71.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
17
#include "mask.h"
18
#include "dropout.h"
19
#include "rotary.h"
20

skrider's avatar
skrider committed
21
22
#include "debug.h"

Tri Dao's avatar
Tri Dao committed
23
24
25
26
27
28
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

29
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;
skrider's avatar
skrider committed
46
#if 1
skrider's avatar
skrider committed
47
    KIN_PRINT(print_traits<Kernel_traits>());
skrider's avatar
skrider committed
48
#endif
Tri Dao's avatar
Tri Dao committed
49

50
51
52
    auto seed_offset = at::cuda::philox::unpack(params.philox_args);
    flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);
Tri Dao's avatar
Tri Dao committed
53
54
55
56

    // Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
    // exit early and no one saves the rng states.
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
57
58
        params.rng_state[0] = std::get<0>(seed_offset);
        params.rng_state[1] = std::get<1>(seed_offset);
Tri Dao's avatar
Tri Dao committed
59
60
    }

61
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
62
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
skrider's avatar
skrider committed
63
#if 1
skrider's avatar
skrider committed
64
    KIN_PRINT(print_binfo(binfo))
skrider's avatar
skrider committed
65
#endif
Tri Dao's avatar
Tri Dao committed
66

Tri Dao's avatar
Tri Dao committed
67
    const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
68
    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
Tri Dao's avatar
Tri Dao committed
69
    if (Is_causal || Is_local) {
70
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
71
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
72
73
74
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    }
    // We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
    // Otherwise we might read OOB elements from gK and gV.
    if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
        const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
        Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                                Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                make_stride(params.o_row_stride, _1{}));
        Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                                  Shape<Int<kBlockM>>{}, Stride<_1>{});

        typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
        Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
        Tensor tOrO = make_tensor<Element>(shape(tOgO));
        clear(tOrO);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        if (!Is_even_K) {
99
            #pragma unroll
100
101
102
103
104
105
106
107
108
109
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgO); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
110
        }
111
        return;
Tri Dao's avatar
Tri Dao committed
112
    }
Tri Dao's avatar
Tri Dao committed
113
    // if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
Tri Dao's avatar
Tri Dao committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
skrider's avatar
skrider committed
147
#if 1
skrider's avatar
skrider committed
148
149
    KIN_PRINT(print(sK.layout()))
    KIN_PRINT(print(gK.layout()))
skrider's avatar
skrider committed
150
151
#endif

Tri Dao's avatar
Tri Dao committed
152
153
154
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
skrider's avatar
skrider committed
155
#if 1
skrider's avatar
skrider committed
156
157
158
    KIN_PRINT(print(sV.layout()))
    KIN_PRINT(print(sVt.layout()))
    KIN_PRINT(print(sVtNoSwizzle.layout()))
skrider's avatar
skrider committed
159
160
#endif

Tri Dao's avatar
Tri Dao committed
161
162
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
168
169

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
skrider's avatar
skrider committed
170
#if 1
skrider's avatar
skrider committed
171
172
    KIN_PRINT(print(tKgK.layout()))
    KIN_PRINT(print(tKsK.layout()))
skrider's avatar
skrider committed
173
174
#endif

Tri Dao's avatar
Tri Dao committed
175
176
177
178
179
    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)
skrider's avatar
skrider committed
180
#if 1
skrider's avatar
skrider committed
181
182
    KIN_PRINT(print(tSrQ.layout()))
    KIN_PRINT(print(tSrK.layout()))
skrider's avatar
skrider committed
183
184
#endif

Tri Dao's avatar
Tri Dao committed
185
186
    Tensor tSgS  = thr_mma.partition_C(gP);

Tri Dao's avatar
Tri Dao committed
187
    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K
skrider's avatar
skrider committed
188
#if 1
skrider's avatar
skrider committed
189
    KIN_PRINT(print(acc_o.layout()))
skrider's avatar
skrider committed
190
191
#endif

Tri Dao's avatar
Tri Dao committed
192
193
194
195
    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
196
197
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
skrider's avatar
skrider committed
198
#if 0
skrider's avatar
skrider committed
199
    KIN_PRINT(smem_thr_copy_Q.print_all());
skrider's avatar
skrider committed
200
#endif
Tri Dao's avatar
Tri Dao committed
201
202
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
skrider's avatar
skrider committed
203
#if 1
skrider's avatar
skrider committed
204
    KIN_PRINT(print(tSsQ.layout()))
skrider's avatar
skrider committed
205
#endif
Tri Dao's avatar
Tri Dao committed
206
207
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
208
209
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
210
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);
skrider's avatar
skrider committed
211
#if 1
skrider's avatar
skrider committed
212
    KIN_PRINT(print(tSsK.layout()))
skrider's avatar
skrider committed
213
#endif
Tri Dao's avatar
Tri Dao committed
214

Tri Dao's avatar
Tri Dao committed
215
216
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
skrider's avatar
skrider committed
230
#if 1
skrider's avatar
skrider committed
231
232
    KIN_PRINT(print(cQ.layout()))
    KIN_PRINT(print(cKV.layout()))
skrider's avatar
skrider committed
233
#endif
Tri Dao's avatar
Tri Dao committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
skrider's avatar
skrider committed
254
#if 1
skrider's avatar
skrider committed
255
256
257
258
    KIN_PRINT(print(tQcQ.layout()))
    KIN_PRINT(print(tKVcKV.layout()))
    KIN_PRINT(print(tQpQ.layout()))
    KIN_PRINT(print(tKVpKV.layout()))
skrider's avatar
skrider committed
259
#endif
Tri Dao's avatar
Tri Dao committed
260
261
262
263
264
265
266
267
268
269
270
271

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
272
273
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
274
275
276
277
278
279
280
281
282
283
284
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
285
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
286
287
288
289
290
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
291
292
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
293
294
295
296
297
298
299
300
301
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
302
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
303
304
305
306
    }

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
307
308
    flash::Softmax<2 * size<1>(acc_o)> softmax;

309
310
    const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
311

Tri Dao's avatar
Tri Dao committed
312
313
314
315
316
317
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

318
319
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
320
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
321
        ? 1
Tri Dao's avatar
Tri Dao committed
322
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
323
324
325
326
327
328
329
330
331
332
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
333
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
334
335
        } else {
            // Clear the smem tiles to account for predicated off loads
336
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
337
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
338
339
340
341
342
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
343
344
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
345
346
347
        );
        // if (cute::thread0()) { print(acc_s); }

348
349
350
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
351
352
353

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
354
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
355
356
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
357
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
358
359
360
361
362
363
364
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
365
366
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
367

368
369
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
370
371
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
372
        if (Return_softmax) {
373
374
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
375
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
376
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
377
            );
378
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
379
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
380
381
        }
        if (Is_dropout) {
382
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
383
384
        }

385
386
387
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
388
        // if (cute::thread0()) { print(tOrP); }
389
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
390
391
392
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
Tri Dao's avatar
Tri Dao committed
393
        if (n_masking_steps > 1 && n_block <= n_block_min) {
Tri Dao's avatar
Tri Dao committed
394
395
396
397
398
399
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
Tri Dao's avatar
Tri Dao committed
400
    for (; n_block >= n_block_min; --n_block) {
Tri Dao's avatar
Tri Dao committed
401
402
403
404
405
406
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
407
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
408
409
410
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
411
412
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
413
414
415
416
        );

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
417
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
418
419
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
420
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
421
422
423
424
425
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

426
427
428
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
429

Tri Dao's avatar
Tri Dao committed
430
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
431

432
        Tensor rP = flash::convert_type<Element>(acc_s);
433
434
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
435
        if (Return_softmax) {
436
437
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
438
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
439
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
440
            );
441
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
442
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
443
444
        }
        if (Is_dropout) {
445
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
446
447
        }

448
449
450
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
451
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
452
453
454
455
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
456
    Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
Tri Dao's avatar
Tri Dao committed
457
458
459
460
461

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
462
463
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
464
465
466
467
468
469
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
470
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
471
472
473
474
475
476
477
478
479
480

    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.o_row_stride, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
481
482
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
483
484
485
486
487
488
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
489
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
515
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
516
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
517
518
519
520
521
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

522
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;
skrider's avatar
skrider committed
539
#if 1
skrider's avatar
skrider committed
540
541
542
543
544
545
546
547
    KIN_PRINT(print_traits<Kernel_traits>())
    KIN_PRINT_BOOL(Is_causal)
    KIN_PRINT_BOOL(Is_local)
    KIN_PRINT_BOOL(Has_alibi)
    KIN_PRINT_BOOL(Is_even_MN)
    KIN_PRINT_BOOL(Is_even_K)
    KIN_PRINT_BOOL(Split)
    KIN_PRINT_BOOL(Append_KV)
skrider's avatar
skrider committed
548
#endif
Tri Dao's avatar
Tri Dao committed
549

Tri Dao's avatar
Tri Dao committed
550
551
    using GmemTiledCopyO = std::conditional_t<
        !Split,
552
553
        typename Kernel_traits::GmemTiledCopyO,
        typename Kernel_traits::GmemTiledCopyOaccum
Tri Dao's avatar
Tri Dao committed
554
555
556
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
557
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
558
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
559
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
560
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
skrider's avatar
skrider committed
561
#if 1
skrider's avatar
skrider committed
562
    KIN_PRINT(print_binfo(binfo))
skrider's avatar
skrider committed
563
#endif
Tri Dao's avatar
Tri Dao committed
564
565

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
Tri Dao's avatar
Tri Dao committed
566
567
568
    const int n_block_min = !Is_local
        ? n_split_idx * n_blocks_per_split
        : std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
569
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
Tri Dao's avatar
Tri Dao committed
570
    if (Is_causal || Is_local) {
Tri Dao's avatar
Tri Dao committed
571
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
572
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
573
574
575
576
577
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
578
579
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
580
581
582
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
583
584
585
586
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
587
588
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
589
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
590
591
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
592
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
610
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
611
612
613
614
615
616
617
618
619
620
621
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
622
    const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
Tri Dao's avatar
Tri Dao committed
623
624
625
626
    const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
    const index_t row_offset_k = block_table == nullptr
        ? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
627
628
        : init_thread_kv_page_slice_offset<Kernel_traits>(tidx, bidh / params.h_h_k_ratio, n_block_max, params.page_block_size, block_table, 
            params.k_batch_stride, params.k_row_stride, params.k_head_stride);
Tri Dao's avatar
Tri Dao committed
629
630
631
    const index_t row_offset_v = block_table == nullptr
        ? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
632
633
        : init_thread_kv_page_slice_offset<Kernel_traits>(tidx, bidh / params.h_h_k_ratio, n_block_max, params.page_block_size, block_table, 
            params.v_batch_stride, params.v_row_stride, params.v_head_stride);
Tri Dao's avatar
Tri Dao committed
634
635
636
637
638
639
640

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
641
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
642
643
644
645
646
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
647
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
648
649
650
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
skrider's avatar
skrider committed
651
#if 1
skrider's avatar
skrider committed
652
653
654
655
656
    KIN_PRINT(print(sK.layout()))
    KIN_PRINT(print(gK.layout()))
    KIN_PRINT(print(sV.layout()))
    KIN_PRINT(print(sVt.layout()))
    KIN_PRINT(print(sVtNoSwizzle.layout()))
skrider's avatar
skrider committed
657
#endif
Tri Dao's avatar
Tri Dao committed
658

skrider's avatar
skrider committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_Q;
    auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyQKVPaged gmem_tiled_copy_KV;
    auto gmem_thr_copy_KV = gmem_tiled_copy_KV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_KV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_KV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_KV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_KV.partition_D(sV);
#if 1
    KIN_PRINT(print(tKgK.layout()))
    KIN_PRINT(print(tKsK.layout()))
#endif
Tri Dao's avatar
Tri Dao committed
674

skrider's avatar
skrider committed
675
#if 1
skrider's avatar
skrider committed
676
677
678
679
    fill(tVgV, 1.f * ((Element) tidx));
    __syncthreads();
    
    KIN_PRINT(print_tensor(gV))
skrider's avatar
skrider committed
680
#endif
Tri Dao's avatar
Tri Dao committed
681
682
683
684
685
686

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)
skrider's avatar
skrider committed
687
#if 1
skrider's avatar
skrider committed
688
689
    KIN_PRINT(print(tSrQ.layout()))
    KIN_PRINT(print(tSrK.layout()))
skrider's avatar
skrider committed
690
#endif
Tri Dao's avatar
Tri Dao committed
691
692

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K
skrider's avatar
skrider committed
693
#if 1
skrider's avatar
skrider committed
694
    KIN_PRINT(print(acc_o.layout()))
skrider's avatar
skrider committed
695
#endif
Tri Dao's avatar
Tri Dao committed
696
697
698
699
700
701
702
703

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
skrider's avatar
skrider committed
704
#if 1
skrider's avatar
skrider committed
705
    KIN_PRINT(print(tSsQ.layout()))
skrider's avatar
skrider committed
706
#endif
Tri Dao's avatar
Tri Dao committed
707
708
709
710

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);
skrider's avatar
skrider committed
711
#if 1
skrider's avatar
skrider committed
712
    KIN_PRINT(print(tSsK.layout()))
skrider's avatar
skrider committed
713
#endif
Tri Dao's avatar
Tri Dao committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
skrider's avatar
skrider committed
729
#if 1
skrider's avatar
skrider committed
730
731
    KIN_PRINT(print(cQ.layout()))
    KIN_PRINT(print(cKV.layout()))
skrider's avatar
skrider committed
732
#endif
Tri Dao's avatar
Tri Dao committed
733
734

    // Repeat the partitioning with identity layouts
skrider's avatar
skrider committed
735
736
    Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_KV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
Tri Dao's avatar
Tri Dao committed
737
738
739
740

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
skrider's avatar
skrider committed
741
#if 1
skrider's avatar
skrider committed
742
743
744
745
    KIN_PRINT(print(tQcQ.layout()))
    KIN_PRINT(print(tKVcKV.layout()))
    KIN_PRINT(print(tQpQ.layout()))
    KIN_PRINT(print(tKVpKV.layout()))
skrider's avatar
skrider committed
746
#endif
Tri Dao's avatar
Tri Dao committed
747
748
749
750
751
752
753
754
755
756
757

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

758
759
760
761
762
    // Copy from Knew to K, optionally apply rotary embedding.
    typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
    auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
    auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
763
764
765
766
    if constexpr (Append_KV) {
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        // if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
        // if (cute::thread(8, 0)) { print_tensor(gCos); }
        // if (cute::thread(0, 0)) { print_tensor(tRgCos); }

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
        const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
skrider's avatar
skrider committed
804
805
        Tensor tKgKnew = gmem_thr_copy_KV.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew = gmem_thr_copy_KV.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)
806
807

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
Tri Dao's avatar
Tri Dao committed
808
809
        auto tKgK_data = tKgK.data();
        auto tVgV_data = tVgV.data();
810
811
812
813
814
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            if (params.rotary_dim == 0) {
                flash::copy_w_min_idx<Is_even_K>(
                    tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
                );
            } else {
                if (params.is_rotary_interleaved) {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
                } else {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));

                }
            }
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
Tri Dao's avatar
Tri Dao committed
840
841
842
843
844
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                if (n_block > n_block_copy_min) {
845
846
847
848
849
850
851
852
853
854
855
856
                    // const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
                    // const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
                    // const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
                    // const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
                    // const int table_diff = block_table[block_table_idx_next] - block_table[block_table_idx_cur];
                    // const int offset_diff = block_table_offset_next - block_table_offset_cur;
                    // tVgV.data() = tVgV.data() + table_diff * params.v_batch_stride + offset_diff * params.v_row_stride;
                    // tKgK.data() = tKgK.data() + table_diff * params.k_batch_stride + offset_diff * params.k_row_stride;
                    tVgV.data() = tVgV.data() + advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, block_table,
                        params.v_batch_stride, params.v_row_stride);
                    tKgK.data() = tKgK.data() + advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, block_table,
                        params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
857
858
                }
            }
859
        }
860
        // Need this before we can read in K again, so that we'll see the updated K values.
861
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
862
863
        tKgK.data() = tKgK_data;
        tVgV.data() = tVgV_data;
864
865
    }

866
867
868
    // Read Q from gmem to smem, optionally apply rotary embedding.
    if (!Append_KV || params.rotary_dim == 0) {
        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
skrider's avatar
skrider committed
869
        flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
870
871
                                           binfo.actual_seqlen_q - m_block * kBlockM);
    } else {
Tri Dao's avatar
Tri Dao committed
872
        const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
873
874
875
876
        // If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
        // We do this by setting the row stride of gCos / gSin to 0.
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
877
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
878
879
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
880
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
881
882
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
883
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
884
885
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
886
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        if (params.is_rotary_interleaved) {
            flash::copy_rotary_interleaved<Is_even_K>(
                tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        } else {
            flash::copy_rotary_contiguous<Is_even_K>(
                tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        }
    }
Tri Dao's avatar
Tri Dao committed
903
904
905

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
skrider's avatar
skrider committed
906
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV,
907
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
908
909
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
910
911
912
913
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
914
915
916

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
917
918
    flash::Softmax<2 * size<1>(acc_o)> softmax;

Tri Dao's avatar
Tri Dao committed
919
    const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
920
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
921

Tri Dao's avatar
Tri Dao committed
922
923
924
925
926
927
928
929
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
930
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
Tri Dao's avatar
Tri Dao committed
931
        ? 1
Tri Dao's avatar
Tri Dao committed
932
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
933
934
935
936
937
938
939
940
941
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
Tri Dao's avatar
Tri Dao committed
942
943
944
945
946
947
948
949
950
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            } else {
                const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
                const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
                const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
                const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
                tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
            }
skrider's avatar
skrider committed
951
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
952
953
        } else {
            // Clear the smem tiles to account for predicated off loads
954
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
skrider's avatar
skrider committed
955
                gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
956
957
958
959
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
960
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
961
962
963
964
965
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }

966
967
968
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
969
970
971

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
972
973
974
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
975
976
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
977
978
979
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
980
981
                tKgK.data() = tKgK.data() + advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, block_table,
                    params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
982
            }
skrider's avatar
skrider committed
983
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
984
985
986
987
988
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
989
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
990
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
991
992
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
993
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
994

995
996
997
998
999
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
1000

1001
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
Tri Dao's avatar
Tri Dao committed
1017
1018
1019
        if (block_table == nullptr) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
        } else {
1020
1021
            tVgV.data() = tVgV.data() + advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
                block_table, params.v_batch_stride, params.v_row_stride);
Tri Dao's avatar
Tri Dao committed
1022
        }
skrider's avatar
skrider committed
1023
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1024
1025
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
1026
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
1027
1028
1029
1030
1031
1032
1033
1034
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
1035
1036
1037
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
1038
1039
                tKgK.data() = tKgK.data() + advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
                    block_table, params.k_batch_stride, params.k_row_stride);            
Tri Dao's avatar
Tri Dao committed
1040
            }
skrider's avatar
skrider committed
1041
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1042
1043
1044
1045
1046
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

1047
1048
1049
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
1050
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
1051

1052
1053
1054
1055
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
1056

1057
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
1058
1059
1060
1061
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
1062
    Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
Tri Dao's avatar
Tri Dao committed
1063
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
1064

Tri Dao's avatar
Tri Dao committed
1065
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
1066
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1067
1068
1069
1070
1071
1072
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
1073
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1074
1075
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
1076
1077
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1078
1079
1080
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1081
1082
1083

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
1084
1085
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1086
1087
1088
1089
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
    const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

Tri Dao's avatar
Tri Dao committed
1090
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
1091
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
1092
1093
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
1094
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
1095
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
1096

Tri Dao's avatar
Tri Dao committed
1097
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1098
1099
1100
1101
1102
1103
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
1104
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
Tri Dao's avatar
Tri Dao committed
1134
1135
    // __syncthreads();
    // if (cute::thread0()) { print(tOgOaccum); }
Tri Dao's avatar
Tri Dao committed
1136
1137
1138
1139
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1140
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

1156
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1157
1158
1159
1160
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1161
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1162
1163
1164
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1165
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1166
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1167
1168
1169
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
1170
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1171
1172
1173
1174
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1175
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1176
1177
1178
1179
1180
1181
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
1182
    constexpr int kNThreads = Kernel_traits::kNThreads;
Tri Dao's avatar
Tri Dao committed
1183
1184

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
1185
1186
    static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
    static_assert(kNThreads == 128, "We assume that each block has 128 threads");
Tri Dao's avatar
Tri Dao committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
                                   make_stride(params.b * params.h * params.seqlen_q, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
1202
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
Tri Dao's avatar
Tri Dao committed
1203
1204

    // Read the LSE values from gmem and store them in shared memory, then tranpose them.
1205
    constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
Tri Dao's avatar
Tri Dao committed
1206
1207
1208
1209
1210
1211
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
        ElementAccum lse = (row < params.num_splits && col < params.b * params.h * params.seqlen_q - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
1212
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
Tri Dao's avatar
Tri Dao committed
1213
1214
1215
1216
1217
1218
1219
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
1220
    // kBlockM rows, so each time we load we can load 128 / kBlockM rows).
Tri Dao's avatar
Tri Dao committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1239
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1240
1241
1242
1243
1244
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1245
1246
1247
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) { gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum; }
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
1263
1264
1265
1266
1267
1268
1269
    constexpr int kBlockN = kNThreads / kBlockM;
    using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
    using GmemTiledCopyOaccum = decltype(
        make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
                        GmemLayoutAtomOaccum{},
                        Layout<Shape < _1, _4>>{}));  // Val layout, 4 vals per store
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
1301
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
Tri Dao's avatar
Tri Dao committed
1302
1303
1304
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
1305
    // if (cute::thread0()) { print_tensor(tOrO); }
Tri Dao's avatar
Tri Dao committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1335
} // namespace flash