flash_fwd_kernel.h 66.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1, typename Tensor2>
inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, Tensor1 &scores_sum,
                                         Tensor2 &acc_o, float softmax_scale_log2) {
    if (Is_first) {
        flash::template reduce_max</*zero_init=*/true>(scores, scores_max);
        flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
        flash::reduce_sum(scores, scores_sum);
    } else {
        Tensor scores_max_prev = make_fragment_like(scores_max);
Tri Dao's avatar
Tri Dao committed
33
        cute::copy(scores_max, scores_max_prev);
Tri Dao's avatar
Tri Dao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        flash::template reduce_max</*zero_init=*/false>(scores, scores_max);
        // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
        Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
        #pragma unroll
        for (int mi = 0; mi < size(scores_max); ++mi) {
            float scores_max_cur = !Check_inf
                ? scores_max(mi)
                : (scores_max(mi) == -INFINITY ? 0.0f : scores_max(mi));
            float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
            scores_sum(mi) *= scores_scale;
            #pragma unroll
            for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale; }
        }
        flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
        Tensor scores_sum_cur = make_fragment_like(scores_sum);
        flash::reduce_sum(scores, scores_sum_cur);
        #pragma unroll
        for (int mi = 0; mi < size(scores_sum); ++mi) { scores_sum(mi) += scores_sum_cur(mi); }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename TiledCopy>
inline __device__ void write_softmax_to_gmem(
Tri Dao's avatar
Tri Dao committed
59
    Tensor<Engine0, Layout0> const &tOrP, Tensor<Engine1, Layout1> &tPgP, TiledCopy gmem_tiled_copy_P
Tri Dao's avatar
Tri Dao committed
60
61
62
63
64
65
66
67
) {
    // Reshape tOrP from (8, MMA_M, MMA_N) to (8, MMA_M * MMA_N)
    Layout l = tOrP.layout();
    Tensor tPrP = make_tensor(tOrP.data(), make_layout(get<0>(l), make_layout(get<1>(l), get<2>(l))));
    CUTE_STATIC_ASSERT_V(size<2>(tPgP) == _1{});
    CUTE_STATIC_ASSERT_V(size<1>(tPrP) == size<1>(tPgP));
    #pragma unroll
    for (int mi = 0; mi < size<1>(tPrP); ++mi) {
Tri Dao's avatar
Tri Dao committed
68
        cute::copy(gmem_tiled_copy_P, tPrP(_, mi), tPgP(_, mi, 0));
Tri Dao's avatar
Tri Dao committed
69
70
71
72
73
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

74
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_M = kBlockM / decltype(size<0>(typename Kernel_traits::TiledMma::TiledShape_MNK{}))::value;

93
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
94
95
96
97
    if (m_block * kBlockM >= binfo.actual_seqlen_q || binfo.actual_seqlen_k == 0) return;

    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
    if (Is_causal) {
98
99
        n_block_max = std::min(n_block_max,
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q, kBlockN));
Tri Dao's avatar
Tri Dao committed
100
101
102
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        // We exit early and write 0 to gO and gLSE.
        // Otherwise we might read OOB elements from gK and gV.
        if (n_block_max <= 0) {
            // Save seed and offset for backward. If we don't have this here, the 0-th thread block might
            // exit early and no one saves the rng state.
            if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
                auto seeds = at::cuda::philox::unpack(params.philox_args);
                params.rng_state[0] = std::get<0>(seeds);
                params.rng_state[1] = std::get<1>(seeds);
            }
            const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
                + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
            const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
            Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                                    Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                    make_stride(params.o_row_stride, _1{}));
            Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

            typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
            auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
            Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
            Tensor tOrO = make_tensor<Element>(shape(tOgO));
            clear(tOrO);
            // Construct identity layout for sO
            Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            // Repeat the partitioning with identity layouts
            Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
            Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
            if (!Is_even_K) {
                #pragma unroll
                for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
            }
            // Clear_OOB_K must be false since we don't want to write zeros to gmem
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
                gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
            );
            #pragma unroll
            for (int m = 0; m < size<1>(tOgO); ++m) {
                const int row = get<0>(tOcO(0, m, 0));
                if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
            }
            return;
        }
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});

Tri Dao's avatar
Tri Dao committed
185
186
187
188
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyP gmem_tiled_copy_P;
    auto gmem_thr_copy_P = gmem_tiled_copy_P.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tPgP = gmem_thr_copy_P.partition_D(gP);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
210
211
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
212
213
214
215
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
216
217
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
218
219
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

Tri Dao's avatar
Tri Dao committed
220
221
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // TODO: this might need to change if we change the mma instruction in SM70
    Tensor scores_max = make_tensor<ElementAccum>(Shape<Int<2 * size<1>(acc_o)>>{});
    Tensor scores_sum = make_fragment_like(scores_max);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    Tensor tQrQ = make_fragment_like(tQgQ);
    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
272
273
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // Copy rmem to smem
    // // copy(tQrQ, tQsQ);
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
289
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
290
291
292
293
294
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
295
296
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
297
298
299
300
301
302
303
304
305
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
306
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
307
308
309
310
311
312
    }

    auto seeds = at::cuda::philox::unpack(params.philox_args);
    unsigned long long seed = std::get<0>(seeds);
    unsigned long long offset = std::get<1>(seeds) + (bidb * params.h + bidh) * 32 + tidx % 32;

313
    // Save seed and offset for backward.
314
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
315
316
317
318
        params.rng_state[0] = seed;
        params.rng_state[1] = std::get<1>(seeds);
    }

Tri Dao's avatar
Tri Dao committed
319
320
321
322
323
324
325
326
    clear(acc_o);

    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

327
328
329
330
331
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
    constexpr int n_masking_steps = !Is_causal
        ? 1
        : (Is_even_MN ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
332
333
334
335
336
337
338
339
340
341
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
342
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
343
344
        } else {
            // Clear the smem tiles to account for predicated off loads
345
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
346
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
347
348
349
350
351
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
352
353
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
354
355
356
357
358
359
360
361
362
363
        );
        // if (cute::thread0()) { print(acc_s); }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread0()) { print(scores); }
        // We don't put the masking before the matmul S = Q K^T because we don't clear sK
        // for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
        // can produce Inf / NaN.
        if (!Is_causal) {
364
            if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
Tri Dao's avatar
Tri Dao committed
365
366
367
368
369
370
371
372
373
374
375
376
        } else {
            // Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
            // Tensor taccScS = thr_mma.partition_C(caccS);                           // (MMA,MMA_M,MMA_N)
            // static_assert(decltype(size<0>(taccScS))::value == 4);
            // // Convert to ((2, 2), MMA_M, MMA_N) then take only the row indices.
            // Tensor idx_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
            // Tensor idx_rowcol = make_tensor(taccScS.data(), flash::convert_layout_acc_rowcol(taccScS.layout()));
            // flash::apply_mask_causal_w_idx(scores, idx_rowcol, n_block * kBlockN, binfo.actual_seqlen_k,
            //                               m_block * kBlockM);
            // Idk why it's get<1> and not get<0> of the stride.
            // if (cute::thread0()) { print(idx_row.layout()); print(stride<1>(idx_row)); printf("stride = %d \n", get<1>(stride<1>(idx_row))); }
            // I can't get the stride from idx_row
377
            flash::apply_mask_causal(scores, n_block * kBlockN, binfo.actual_seqlen_k,
Tri Dao's avatar
Tri Dao committed
378
379
                                     // m_block * kBlockM + get<0>(idx_row(0)),
                                     m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
380
                                     binfo.actual_seqlen_q,
Tri Dao's avatar
Tri Dao committed
381
382
383
384
385
386
387
388
389
390
                                     kNWarps * 16);
                                     // m_block * kBlockM + (tidx / 32) * 16, kNWarps * 16);
                                     // m_block * kBlockM + (tidx / 32) * (kBlockM / kNWarps), 16);
        }

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > 0) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
391
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
            ? softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
            : softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);

        // Convert scores from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
407
408
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
409
410
        if (Return_softmax) {
            Tensor tOrP_copy = make_fragment_like(tOrP);
Tri Dao's avatar
Tri Dao committed
411
            cute::copy(tOrP, tOrP_copy);
Tri Dao's avatar
Tri Dao committed
412
413
414
415
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, kNWarps
            );
Tri Dao's avatar
Tri Dao committed
416
            flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
Tri Dao's avatar
Tri Dao committed
417
418
419
420
421
422
423
424
            tPgP.data() = tPgP.data() + (-kBlockN);
        }
        if (Is_dropout) {
            flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
                                 block_row_idx, block_col_idx, kNWarps);
        }
        // if (cute::thread0()) { print(tOrP); }

Tri Dao's avatar
Tri Dao committed
425
        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= 0) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= 0; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
443
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
444
445
446
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
447
448
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
449
450
451
452
453
454
455
        );

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > 0) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
456
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
457
458
459
460
461
462
463
464
465
466
467
468
469
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        softmax_rescale_o</*Is_first=*/false>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);

        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
470
471
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
472
473
        if (Return_softmax) {
            Tensor tOrP_copy = make_fragment_like(tOrP);
Tri Dao's avatar
Tri Dao committed
474
            cute::copy(tOrP, tOrP_copy);
Tri Dao's avatar
Tri Dao committed
475
476
477
478
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, kNWarps
            );
Tri Dao's avatar
Tri Dao committed
479
            flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
Tri Dao's avatar
Tri Dao committed
480
481
482
483
484
485
486
            tPgP.data() = tPgP.data() + (-kBlockN);
        }
        if (Is_dropout) {
            flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
                                 block_row_idx, block_col_idx, kNWarps);
        }

Tri Dao's avatar
Tri Dao committed
487
        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    }

    // Epilogue

    // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
    Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
    Tensor lse = make_fragment_like(scores_sum);
    #pragma unroll
    for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
        float sum = scores_sum(mi);
        float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
        lse(mi) = (sum == 0.f || sum != sum) ? INFINITY : scores_max(mi) * params.scale_softmax + __logf(sum);
        float scale = !Is_dropout ? inv_sum : inv_sum * params.rp_dropout;
        #pragma unroll
        for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
    }

    // if (cute::thread0()) { print(acc_o_rowcol); }

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
511
512
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
513
514
515
516
517
518
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
519
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
520
521
522
523
524
525
526
527
528
529

    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.o_row_stride, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
530
531
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
532
533
534
535
536
537
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
538
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
564
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
565
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
566
567
568
569
570
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
571
template<typename Kernel_traits, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

Tri Dao's avatar
Tri Dao committed
589
590
591
592
593
594
595
    using GmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::GmemTiledCopyOaccum,
        typename Kernel_traits::GmemTiledCopyO
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
596
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
597
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
598
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
599
600
601
602
603
604
605
606
607
608
609
610
611
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
    const int n_block_min = n_split_idx * n_blocks_per_split;
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
    if (Is_causal) {
        n_block_max = std::min(n_block_max,
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q, kBlockN));
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
612
613
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
614
615
616
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
617
618
619
620
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
621
622
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
623
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
624
625
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
626
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
644
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
667
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
668
669
670
671
672
673
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
674
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});

    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // TODO: this might need to change if we change the mma instruction in SM70
    Tensor scores_max = make_tensor<ElementAccum>(Shape<Int<2 * size<1>(acc_o)>>{});
    Tensor scores_sum = make_fragment_like(scores_max);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    if constexpr (Append_KV) {
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
        const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
        const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
        Tensor tKgKnew = gmem_thr_copy_QKV.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew = gmem_thr_copy_QKV.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
        }
        __syncthreads();
        if (n_block_max > n_block_copy_min) {
            tKgK.data() = tKgK.data() + (n_block_max - n_block_copy_min) * kBlockN * params.k_row_stride;
            tVgV.data() = tVgV.data() + (n_block_max - n_block_copy_min) * kBlockN * params.v_row_stride;
        }
    }

Tri Dao's avatar
Tri Dao committed
790
791
792
793
794
795
796
    Tensor tQrQ = make_fragment_like(tQgQ);
    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
797
798
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
799
800
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
801
802
803
804
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

    clear(acc_o);

    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
    constexpr int n_masking_steps = !Is_causal
        ? 1
        : (Is_even_MN ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
829
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
830
831
        } else {
            // Clear the smem tiles to account for predicated off loads
832
833
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
834
835
836
837
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
838
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread0()) { print(scores); }
        // We don't put the masking before the matmul S = Q K^T because we don't clear sK
        // for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
        // can produce Inf / NaN.
        if (!Is_causal) {
            if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
        } else {
            flash::apply_mask_causal(scores, n_block * kBlockN, binfo.actual_seqlen_k,
                                     m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
                                     binfo.actual_seqlen_q,
                                     kNWarps * 16);
        }

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
861
862
863
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
864
865
866
        if (n_block > n_block_min) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
867
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
868
869
870
871
872
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
873
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
874
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
875
876
877
            ? softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || !Is_even_MN>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
            : softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || !Is_even_MN>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

        // Convert scores from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));

        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
903
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
904
905
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
906
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
907
908
909
910
911
912
913
914
915
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
916
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        softmax_rescale_o</*Is_first=*/false>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);

        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));

        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
    }

    // Epilogue

    // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
    Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
Tri Dao's avatar
Tri Dao committed
938
    // if (cute::thread0()) { print(acc_o_rowcol); }
Tri Dao's avatar
Tri Dao committed
939
940
941
942
943
    Tensor lse = make_fragment_like(scores_sum);
    #pragma unroll
    for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
        float sum = scores_sum(mi);
        float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
Tri Dao's avatar
Tri Dao committed
944
        lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : scores_max(mi) * params.scale_softmax + __logf(sum);
Tri Dao's avatar
Tri Dao committed
945
946
947
948
        float scale = inv_sum;
        #pragma unroll
        for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
    }
Tri Dao's avatar
Tri Dao committed
949
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
950
951
    // if (cute::thread0()) { print(acc_o_rowcol); }

Tri Dao's avatar
Tri Dao committed
952
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
953
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
960
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
961
962
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
963
964
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
965
966
967
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
968
969
970

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
971
972
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
973
974
975
976
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
    const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

Tri Dao's avatar
Tri Dao committed
977
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
978
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
979
980
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
981
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
982
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
983

Tri Dao's avatar
Tri Dao committed
984
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
985
986
987
988
989
990
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
991
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
Tri Dao's avatar
Tri Dao committed
1021
1022
    // __syncthreads();
    // if (cute::thread0()) { print(tOgOaccum); }
Tri Dao's avatar
Tri Dao committed
1023
1024
1025
1026
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1027
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

1043
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1044
1045
1046
1047
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
1048
template<typename Kernel_traits, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1049
1050
1051
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1052
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1053
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1054
1055
1056
1057
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, int Log_max_splits, bool Is_even_K, typename Params>
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kBlockM = 16;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
    // static_assert(kMaxSplits <= 8, "kMaxSplits must be <= 8 for now, will extend layer");
    static_assert(kBlockM == 16 || kBlockM == 32, "kBlockM must be 16 or 32");
    static_assert(Kernel_traits::kNThreads == 128, "We assume that each block has 128 threads");

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
                                   make_stride(params.b * params.h * params.seqlen_q, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + Kernel_traits::kNThreads - 1) / Kernel_traits::kNThreads;

    // Read the LSE values from gmem and store them in shared memory, then tranpose them.
    constexpr int kRowsPerLoadLSE = Kernel_traits::kNThreads / kBlockM;
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
        ElementAccum lse = (row < params.num_splits && col < params.b * params.h * params.seqlen_q - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
    // 16 rows, so each time we load we can load 8 rows).
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1127
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1128
1129
1130
1131
1132
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1133
1134
1135
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) { gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum; }
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
    typename Kernel_traits::GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    #pragma unroll 2
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); print(tOrO); }
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
    // if (cute::thread0()) { print(tOrO); }

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1218
} // namespace flash