softmax.h 8.59 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
Tri Dao's avatar
Tri Dao committed
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
7
8
9
10
 ******************************************************************************/

#pragma once

#include <cmath>

#include <cute/tensor.hpp>

Tri Dao's avatar
Tri Dao committed
11
#include <cutlass/numeric_types.h>
Tri Dao's avatar
Tri Dao committed
12
13
14
15
16
17
18
19
20
21
22

#include "philox.cuh"
#include "utils.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
23
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
Tri Dao's avatar
Tri Dao committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); mi++) {
        summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            summary(mi) = op(summary(mi), tensor(mi, ni));
        }
    }
}

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
38
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
Tri Dao's avatar
Tri Dao committed
39
40
41
42
43
44
45
46
    CUTE_STATIC_ASSERT_V(size(dst) == size(src));
    #pragma unroll
    for (int i = 0; i < size(dst); i++){
        dst(i) = Allreduce<4>::run(src(i), op);
    }
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
47
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
Tri Dao's avatar
Tri Dao committed
48
49
50
51
52
    thread_reduce_<zero_init>(tensor, summary, op);
    quad_allreduce_(summary, summary, op);
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
53
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
Tri Dao's avatar
Tri Dao committed
54
55
56
57
58
    MaxOp<float> max_op;
    reduce_<zero_init>(tensor, max, max_op);
}

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1>
59
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
Tri Dao's avatar
Tri Dao committed
60
61
62
63
64
65
    SumOp<float> sum_op;
    reduce_(tensor, sum, sum_op);
}

// Apply the exp to all the elements.
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
66
__forceinline__ __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        // If we don't have float around M_LOG2E the multiplication is done in fp64.
        const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
        }
    }
}

// Apply the exp to all the elements.
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
88
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
Tri Dao's avatar
Tri Dao committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        MaxOp<float> max_op;
        max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            max(mi) = max_op(max(mi), tensor(mi, ni));
        }
        max(mi) = Allreduce<4>::run(max(mi), max_op);
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
        sum(mi) = 0;
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
            sum(mi) += tensor(mi, ni);
        }
        SumOp<float> sum_op;
        sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
    }
}

Tri Dao's avatar
Tri Dao committed
118
119
////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
120
121
122
123
124
125
template <int kNRows>
struct Softmax {

    using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
    TensorT row_max, row_sum;

126
    __forceinline__ __device__ Softmax() {};
Tri Dao's avatar
Tri Dao committed
127
128

    template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1>
129
    __forceinline__ __device__ void softmax_rescale_o(Tensor0 &acc_s, Tensor1 &acc_o, float softmax_scale_log2) {
Tri Dao's avatar
Tri Dao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        static_assert(decltype(size<0>(scores))::value == kNRows);
        if (Is_first) {
            flash::template reduce_max</*zero_init=*/true>(scores, row_max);
            flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
            flash::reduce_sum(scores, row_sum);
        } else {
            Tensor scores_max_prev = make_fragment_like(row_max);
            cute::copy(row_max, scores_max_prev);
            flash::template reduce_max</*zero_init=*/false>(scores, row_max);
            // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
            Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
            static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
            #pragma unroll
            for (int mi = 0; mi < size(row_max); ++mi) {
                float scores_max_cur = !Check_inf
                    ? row_max(mi)
                    : (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
                float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
                row_sum(mi) *= scores_scale;
                #pragma unroll
                for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale; }
            }
            flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
            Tensor scores_sum_cur = make_fragment_like(row_sum);
            flash::reduce_sum(scores, scores_sum_cur);
            #pragma unroll
            for (int mi = 0; mi < size(row_sum); ++mi) { row_sum(mi) += scores_sum_cur(mi); }
        }
    };

    template<bool Is_dropout=false, bool Split=false, typename Tensor0>
163
    __forceinline__ __device__ TensorT normalize_softmax_lse(Tensor0 &acc_o, float softmax_scale, float rp_dropout=1.0) {
Tri Dao's avatar
Tri Dao committed
164
        TensorT lse = make_fragment_like(row_sum);
Tri Dao's avatar
Tri Dao committed
165
        Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
Tri Dao's avatar
Tri Dao committed
166
        static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
Tri Dao's avatar
Tri Dao committed
167
        #pragma unroll
Tri Dao's avatar
Tri Dao committed
168
169
170
171
172
        for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
            float sum = row_sum(mi);
            float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
            lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : row_max(mi) * softmax_scale + __logf(sum);
            float scale = !Is_dropout ? inv_sum : inv_sum * rp_dropout;
Tri Dao's avatar
Tri Dao committed
173
            #pragma unroll
Tri Dao's avatar
Tri Dao committed
174
            for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
Tri Dao's avatar
Tri Dao committed
175
        }
Tri Dao's avatar
Tri Dao committed
176
177
        return lse;
    };
Tri Dao's avatar
Tri Dao committed
178
179
};

Tri Dao's avatar
Tri Dao committed
180
}  // namespace flash