softmax.h 5.29 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cmath>

#include <cute/tensor.hpp>

Tri Dao's avatar
Tri Dao committed
11
#include <cutlass/numeric_types.h>
Tri Dao's avatar
Tri Dao committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

#include "philox.cuh"
#include "utils.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); mi++) {
        summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            summary(mi) = op(summary(mi), tensor(mi, ni));
        }
    }
}

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
    CUTE_STATIC_ASSERT_V(size(dst) == size(src));
    #pragma unroll
    for (int i = 0; i < size(dst); i++){
        dst(i) = Allreduce<4>::run(src(i), op);
    }
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
    thread_reduce_<zero_init>(tensor, summary, op);
    quad_allreduce_(summary, summary, op);
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
    MaxOp<float> max_op;
    reduce_<zero_init>(tensor, max, max_op);
}

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
    SumOp<float> sum_op;
    reduce_(tensor, sum, sum_op);
}

// Apply the exp to all the elements.
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        // If we don't have float around M_LOG2E the multiplication is done in fp64.
        const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
        }
    }
}

// Apply the exp to all the elements.
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        MaxOp<float> max_op;
        max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            max(mi) = max_op(max(mi), tensor(mi, ni));
        }
        max(mi) = Allreduce<4>::run(max(mi), max_op);
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
        sum(mi) = 0;
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
            sum(mi) += tensor(mi, ni);
        }
        SumOp<float> sum_op;
        sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
    }
}

}  // namespace flash