setup.py 11.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11

from setuptools import setup, find_packages
12
from setuptools.command.install import install
Tri Dao's avatar
Tri Dao committed
13
14
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
15
16
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
17
18
19
20
21
22
23
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
24
25
26
27
28

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


29
30
31
32
33
34
35
36
37
# @pierce - TODO: Update for proper release
BASE_WHEEL_URL = "https://github.com/piercefreeman/flash-attention/releases/download/{tag_name}/{wheel_name}"

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"


38
39
def get_platform():
    """
40
    Returns the platform name as used in wheel filenames.
41
42
43
44
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
45
46
        mac_version = '.'.join(platform.mac_ver()[0].split('.')[:2])
        return f'macosx_{mac_version}_x86_64'
47
48
49
50
51
52
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))


Tri Dao's avatar
Tri Dao committed
53
54
55
56
def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
57
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
58

Tri Dao's avatar
Tri Dao committed
59
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
60
61
62


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
63
64
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
65
66
67
68

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
69
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
91
92
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
93
94
95
96
97
98
99
100
101
102
103
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
104
105
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
106
107
108
109
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
115
116
117
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
118
        else:
Tri Dao's avatar
Tri Dao committed
119
120
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
121
122
123
cmdclass = {}
ext_modules = []

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

    raise_if_cuda_home_none("flash_attn")
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version < Version("11.0"):
        raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
144
    cc_flag.append("-gencode")
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    cc_flag.append("arch=compute_80,code=sm_80")
    if bare_metal_version >= Version("11.8"):
        cc_flag.append("-gencode")
        cc_flag.append("arch=compute_90,code=sm_90")

    subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
    ext_modules.append(
        CUDAExtension(
            name="flash_attn_cuda",
            sources=[
                "csrc/flash_attn/fmha_api.cpp",
                "csrc/flash_attn/src/fmha_fwd_hdim32.cu",
                "csrc/flash_attn/src/fmha_fwd_hdim64.cu",
                "csrc/flash_attn/src/fmha_fwd_hdim128.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim32.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim64.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim128.cu",
                "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
                "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
                        "--ptxas-options=-v",
                        "-lineinfo"
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
                Path(this_dir) / 'csrc' / 'flash_attn',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
            ],
        )
Tri Dao's avatar
Tri Dao committed
191
192
    )

193
194
195
196
197
198
199
200
201
202
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

class CachedWheelsCommand(install):
    """
    Installer hook to scan for existing wheels that match the current platform environment.
    Falls back to building from source if no wheel is found.

    """
    def run(self):
        if FORCE_BUILD:
            return install.run(self)

        raise_if_cuda_home_none("flash_attn")

        # Determine the version numbers that will be used to determine the correct wheel
        _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
        torch_version_raw = parse(torch.__version__)
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
        cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
        torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}.{torch_version_raw.micro}"

        # Determine wheel URL based on CUDA version, torch version, python version and OS
        wheel_filename = f'flash_attn-{flash_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl'
        wheel_url = BASE_WHEEL_URL.format(
            tag_name=f"v{flash_version}",
            wheel_name=wheel_filename
        )
        print("Guessing wheel URL: ", wheel_url)
        
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
            os.system(f'pip install {wheel_filename}')
            os.remove(wheel_filename)
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
            install.run(self)


Tri Dao's avatar
Tri Dao committed
243
setup(
244
245
    # @pierce - TODO: Revert for official release
    name="flash_attn_wheels",
246
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
247
248
249
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
250
251
252
253
254
    #author="Tri Dao",
    #author_email="trid@stanford.edu",
    # @pierce - TODO: Revert for official release
    author="Pierce Freeman",
    author_email="pierce@freeman.vc",
Tri Dao's avatar
Tri Dao committed
255
256
257
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
258
259
    #url="https://github.com/HazyResearch/flash-attention",
    url="https://github.com/piercefreeman/flash-attention",
Tri Dao's avatar
Tri Dao committed
260
261
    classifiers=[
        "Programming Language :: Python :: 3",
262
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
263
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
264
    ],
Tri Dao's avatar
Tri Dao committed
265
    ext_modules=ext_modules,
266
    cmdclass={
267
        'install': CachedWheelsCommand,
268
269
        "build_ext": BuildExtension
    } if ext_modules else {
270
        'install': CachedWheelsCommand,
271
    },
Gustaf's avatar
Gustaf committed
272
273
274
275
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
276
        "packaging",
277
        "ninja",
Gustaf's avatar
Gustaf committed
278
    ],
Tri Dao's avatar
Tri Dao committed
279
)