"vscode:/vscode.git/clone" did not exist on "a866b43fa1427213a4882a1e103881a2f4d787f6"
setup.py 10.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
Tri Dao's avatar
Tri Dao committed
9
10
11
12

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
13
14
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
15
16
17
18
19
20
21
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
22
23
24
25
26

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def get_platform():
    """
    Returns the platform string.
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
        return 'macosx_10_9_x86_64'
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))

from setuptools.command.install import install

# @pierce - TODO: Remove for proper release
BASE_WHEEL_URL = "https://github.com/piercefreeman/flash-attention/releases/download/{tag_name}/{wheel_name}"

class CustomInstallCommand(install):
    def run(self):
Pierce Freeman's avatar
Pierce Freeman committed
47
48
49
        if os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE":
            return install.run(self)

Pierce Freeman's avatar
Pierce Freeman committed
50
51
        raise_if_cuda_home_none("flash_attn")

52
        # Determine the version numbers that will be used to determine the correct wheel
Pierce Freeman's avatar
Pierce Freeman committed
53
        _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
54
        torch_version_raw = parse(torch.__version__)
55
56
57
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
Pierce Freeman's avatar
Pierce Freeman committed
58
        cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
59
        torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}.{torch_version_raw.micro}"
60
61
62
63

        # Determine wheel URL based on CUDA version, torch version, python version and OS
        wheel_filename = f'flash_attn-{flash_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl'
        wheel_url = BASE_WHEEL_URL.format(
Pierce Freeman's avatar
Pierce Freeman committed
64
65
            #tag_name=f"v{flash_version}",
            # HACK
Pierce Freeman's avatar
Pierce Freeman committed
66
            tag_name=f"v0.0.5",
67
68
            wheel_name=wheel_filename
        )
Pierce Freeman's avatar
Pierce Freeman committed
69
        print("Guessing wheel URL: ", wheel_url)
70
71
72
73
74
75
76
77
        
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
            os.system(f'pip install {wheel_filename}')
            os.remove(wheel_filename)
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
Pierce Freeman's avatar
Pierce Freeman committed
78
79
80
            #install.run(self)
            raise ValueError

81

Tri Dao's avatar
Tri Dao committed
82
83
84
85
def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
86
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
87

Tri Dao's avatar
Tri Dao committed
88
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
89
90
91


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
92
93
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
94
95
96
97

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
98
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
120
121
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
122
123
124
125
126
127
128
129
130
131
132
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
133
134
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
135
136
137
138
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
147
        else:
Tri Dao's avatar
Tri Dao committed
148
149
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])

cmdclass = {}
ext_modules = []

# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
    generator_flag = ["-DOLD_GENERATOR_PATH"]

Tri Dao's avatar
Tri Dao committed
165
raise_if_cuda_home_none("flash_attn")
Tri Dao's avatar
Tri Dao committed
166
167
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
Tri Dao's avatar
Tri Dao committed
168
169
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.0"):
170
    raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
Tri Dao's avatar
Tri Dao committed
171
172
cc_flag.append("-gencode")
cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
173
174
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
Tri Dao's avatar
Tri Dao committed
175
176
177
if bare_metal_version >= Version("11.8"):
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_90,code=sm_90")
Tri Dao's avatar
Tri Dao committed
178

Tri Dao's avatar
Tri Dao committed
179
subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
Tri Dao's avatar
Tri Dao committed
180
181
ext_modules.append(
    CUDAExtension(
Tri Dao's avatar
Tri Dao committed
182
        name="flash_attn_cuda",
Tri Dao's avatar
Tri Dao committed
183
        sources=[
Tri Dao's avatar
Tri Dao committed
184
            "csrc/flash_attn/fmha_api.cpp",
185
186
187
188
189
190
            "csrc/flash_attn/src/fmha_fwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim128.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim128.cu",
Tri Dao's avatar
Tri Dao committed
191
192
            "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
            "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
Tri Dao's avatar
Tri Dao committed
193
194
        ],
        extra_compile_args={
195
            "cxx": ["-O3", "-std=c++17"] + generator_flag,
Tri Dao's avatar
Tri Dao committed
196
197
198
            "nvcc": append_nvcc_threads(
                [
                    "-O3",
199
                    "-std=c++17",
Tri Dao's avatar
Tri Dao committed
200
201
                    "-U__CUDA_NO_HALF_OPERATORS__",
                    "-U__CUDA_NO_HALF_CONVERSIONS__",
202
203
                    "-U__CUDA_NO_HALF2_OPERATORS__",
                    "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
Tri Dao's avatar
Tri Dao committed
204
205
206
207
208
209
210
211
212
213
214
                    "--expt-relaxed-constexpr",
                    "--expt-extended-lambda",
                    "--use_fast_math",
                    "--ptxas-options=-v",
                    "-lineinfo"
                ]
                + generator_flag
                + cc_flag
            ),
        },
        include_dirs=[
Tri Dao's avatar
Tri Dao committed
215
216
            Path(this_dir) / 'csrc' / 'flash_attn',
            Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
Tri Dao's avatar
Tri Dao committed
217
            Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
Tri Dao's avatar
Tri Dao committed
218
219
220
221
        ],
    )
)

222
223
224
225
226
227
228
229
230
231
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
232
setup(
Tri Dao's avatar
Tri Dao committed
233
    name="flash_attn",
234
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
235
236
237
238
239
240
241
242
243
244
245
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
    author_email="trid@stanford.edu",
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
    url="https://github.com/HazyResearch/flash-attention",
    classifiers=[
        "Programming Language :: Python :: 3",
246
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
247
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
248
    ],
Tri Dao's avatar
Tri Dao committed
249
    ext_modules=ext_modules,
250
251
252
253
254
255
    cmdclass={
        'install': CustomInstallCommand,
        "build_ext": BuildExtension
    } if ext_modules else {
        'install': CustomInstallCommand,
    },
Gustaf's avatar
Gustaf committed
256
257
258
259
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
260
        "packaging",
261
        "ninja",
Gustaf's avatar
Gustaf committed
262
    ],
Tri Dao's avatar
Tri Dao committed
263
)