generation.py 30 KB
Newer Older
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
3
import gc
Tri Dao's avatar
Tri Dao committed
4
5
import time
from collections import namedtuple
Tri Dao's avatar
Tri Dao committed
6
from dataclasses import dataclass, field
7
from functools import partial
Tri Dao's avatar
Tri Dao committed
8
from typing import Callable, Optional, Sequence, Union
Tri Dao's avatar
Tri Dao committed
9

Tri Dao's avatar
Tri Dao committed
10
import torch
11
12
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
13
14
from torch import Tensor
from torch.profiler import ProfilerActivity, profile, record_function
15
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput
Tri Dao's avatar
Tri Dao committed
16
17
18
19
20
21


@dataclass
class InferenceParams:
    """Inference parameters that are passed to the main model in order
    to efficienly calculate and store the context during inference."""
Tri Dao's avatar
Tri Dao committed
22

23
    max_seqlen: int
Tri Dao's avatar
Tri Dao committed
24
    max_batch_size: int
25
    seqlen_offset: int = 0
Tri Dao's avatar
Tri Dao committed
26
27
    batch_size_offset: int = 0
    key_value_memory_dict: dict = field(default_factory=dict)
28
    lengths_per_sample: Optional[Tensor] = None
Tri Dao's avatar
Tri Dao committed
29

30
31
32
33
34
35
36
    def reset(self, max_seqlen, max_batch_size):
        self.max_seqlen = max_seqlen
        self.max_batch_size = max_batch_size
        self.seqlen_offset = 0
        if self.lengths_per_sample is not None:
            self.lengths_per_sample.zero_()

Tri Dao's avatar
Tri Dao committed
37

38
39
40
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
def modify_logits_for_top_k_filtering(logits, top_k):
41
    """Set the logits for none top-k values to -inf. Done in-place."""
42
43
44
45
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits.masked_fill_(indices_to_remove, float("-Inf"))


46
47
48
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
def modify_logits_for_top_p_filtering(logits, top_p):
49
    """Set the logits for none top-p values to -inf. Done in-place."""
50
    if top_p <= 0.0 or top_p >= 1.0:
51
52
53
54
        return
    # First sort and calculate cumulative sum of probabilities.
    sorted_logits, sorted_indices = torch.sort(logits, descending=False)
    cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
Tri Dao's avatar
Tri Dao committed
55
    # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
56
57
    sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
    # scatter sorted tensors to original indexing
Tri Dao's avatar
Tri Dao committed
58
59
60
    indices_to_remove = sorted_indices_to_remove.scatter(
        1, sorted_indices, sorted_indices_to_remove
    )
61
    logits.masked_fill_(indices_to_remove, float("-inf"))
62
63
64
65
66
67
68
69
70
71
72


def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
    """Sample from top-k logits.
    Arguments:
        logits: Tensor of shape (batch_size, vocab_size)
    """
    if top_k == 1:  # Short-circuit for greedy decoding
        return logits.argmax(dim=-1)
    else:
        if top_p > 0.0:
Tri Dao's avatar
Tri Dao committed
73
            assert top_p <= 1.0, "top-p should be in (0, 1]."
74
75
76
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))  # Safety check
            logits_top, indices = torch.topk(logits, top_k, dim=-1)
77
78
            if temperature != 1.0:
                logits_top /= temperature
79
80
81
            modify_logits_for_top_p_filtering(logits_top, top_p)
            return indices[
                torch.arange(indices.shape[0], device=indices.device),
Tri Dao's avatar
Tri Dao committed
82
                torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
83
84
            ]
        else:
85
86
            # Clone so that when we modify for top_p we don't change the original logits
            logits_top = logits / temperature if temperature != 1.0 else logits.clone()
87
            modify_logits_for_top_p_filtering(logits_top, top_p)
Tri Dao's avatar
Tri Dao committed
88
89
90
            return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
                dim=-1
            )
91
92


Tri Dao's avatar
Tri Dao committed
93
@torch.inference_mode()
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
105
def decode(
    input_ids,
    model,
    max_length,
    top_k=1,
    top_p=0.0,
    temperature=1.0,
    eos_token_id=None,
    teacher_outputs=None,
    vocab_size=None,
    tensor_parallel=1,
    cg=False,
Tri Dao's avatar
Tri Dao committed
106
    enable_timing=False,
Tri Dao's avatar
Tri Dao committed
107
):
108
109
110
111
    """Decoding, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p.
Tri Dao's avatar
Tri Dao committed
112
    We assume that all sequences in the same batch have the same length.
113

Tri Dao's avatar
Tri Dao committed
114
115
116
    Arguments:
        input_ids: (batch, seq_len)
        max_length: int
117
118
        teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
            logits, the next token is taken from the teacher_outputs. Useful for testing.
119
    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
Tri Dao's avatar
Tri Dao committed
120
121
122
123
        sequences: (batch, max_length)
        scores: tuples of (batch, vocab_size)
    """
    batch_size, seqlen_og = input_ids.shape
Tri Dao's avatar
Tri Dao committed
124
    teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
125
    if cg:
Tri Dao's avatar
Tri Dao committed
126
        if not hasattr(model, "_decoding_cache"):
127
128
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
Tri Dao's avatar
Tri Dao committed
129
130
131
132
133
134
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            tensor_parallel=tensor_parallel,
135
136
        )
        inference_params = model._decoding_cache.inference_params
137
        inference_params.reset(max_length, batch_size)
138
    else:
139
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
Tri Dao's avatar
Tri Dao committed
140

Tri Dao's avatar
Tri Dao committed
141
    def get_logits(input_ids, inference_params):
142
        decoding = inference_params.seqlen_offset > 0
Tri Dao's avatar
Tri Dao committed
143
144
145
        if decoding:
            position_ids = torch.full(
                (batch_size, 1),
146
                inference_params.seqlen_offset,
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
152
153
                dtype=torch.long,
                device=input_ids.device,
            )
        else:
            position_ids = None
        if not cg or not decoding:
            logits = model(
Tri Dao's avatar
Tri Dao committed
154
155
156
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
157
158
                num_last_tokens=1,
            ).logits.squeeze(dim=1)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
            logits = model._decoding_cache.run(
161
                input_ids, position_ids, inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
162
            ).squeeze(dim=1)
Tri Dao's avatar
Tri Dao committed
163
        return logits[..., :vocab_size] if vocab_size is not None else logits
Tri Dao's avatar
Tri Dao committed
164

Tri Dao's avatar
Tri Dao committed
165
    def sample_tokens(logits, inference_params):
166
        if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
Tri Dao's avatar
Tri Dao committed
167
            token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
Tri Dao's avatar
Tri Dao committed
168
        else:
169
            token = teacher_outputs[:, inference_params.seqlen_offset]
170
171
        # return rearrange(token, "b -> b 1")
        return token.unsqueeze(1)
Tri Dao's avatar
Tri Dao committed
172
173

    def should_stop(current_token, inference_params):
174
        if inference_params.seqlen_offset == 0:
Tri Dao's avatar
Tri Dao committed
175
176
177
            return False
        if eos_token_id is not None and (current_token == eos_token_id).all():
            return True
178
        if inference_params.seqlen_offset >= max_length - 1:
Tri Dao's avatar
Tri Dao committed
179
180
181
182
183
184
185
186
187
188
189
190
191
            return True
        return False

    start = torch.cuda.Event(enable_timing=enable_timing)
    end = torch.cuda.Event(enable_timing=enable_timing)

    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        start.record()
    scores, sequences = [], [input_ids]
    while not should_stop(sequences[-1], inference_params):
        scores.append(get_logits(sequences[-1], inference_params))
192
        inference_params.seqlen_offset += sequences[-1].shape[1]
Tri Dao's avatar
Tri Dao committed
193
194
195
196
197
198
199
        sequences.append(sample_tokens(scores[-1], inference_params))
    if enable_timing:
        end.record()
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
200
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
201
    return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
Tri Dao's avatar
Tri Dao committed
202
203


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def sample_speculative(logits, logits_draft, tokens_draft, top_k=1, top_p=0.0, temperature=1.0):
    """Algorithm 1 from [1]
    [1] Fast Inference from Transformers via Speculative Decoding
    Yaniv Leviathan, Matan Kalman, Yossi Matias
    https://arxiv.org/abs/2211.17192

    Arguments:
        logits: Tensor of shape (batch_size, seqlen + 1, vocab_size)
        logits_draft: Tensor of shape (batch_size, seqlen, vocab_size)
        tokens_draft: Tensor of shape (batch_size, seqlen)
    Return:
        tokens: Tensor of shape (batch_size, seqlen + 1)
        num_generated_tokens: Tensor of shape (batch_size), with value in [1, seqlen + 1].
            For each sequence in the batch, the number of valid tokens that were sampled by
            speculative sampling.
    """
    batch, seqlen_p_1, vocab_size = logits.shape
    seqlen = seqlen_p_1 - 1
    assert logits_draft.shape == (batch, seqlen, vocab_size)
    assert tokens_draft.shape == (batch, seqlen)
    assert tokens_draft.dtype in [torch.int64, torch.int32]
    # TODO: if top_k = 1 we can simplify things and only work with indices
    if top_p > 0.0:
        assert top_p <= 1.0, "top-p should be in (0, 1]."
    # Clone so that when we modify for top_p we don't change the original logits
    logits = logits / temperature if temperature != 1.0 else logits.clone()
    logits_draft = logits_draft / temperature if temperature != 1.0 else logits_draft.clone()
    if top_k > 0:
        top_k = min(top_k, logits.size(-1))  # Safety check
        modify_logits_for_top_k_filtering(logits, top_k)
        modify_logits_for_top_k_filtering(logits_draft, top_k)
    modify_logits_for_top_p_filtering(logits, top_p)
    modify_logits_for_top_p_filtering(logits_draft, top_p)
    probs = torch.softmax(logits, dim=-1)
    probs_draft = torch.softmax(logits_draft, dim=-1)
    gather = lambda probs, tokens: rearrange(
        probs.gather(dim=-1, index=rearrange(tokens, "... -> ... 1")), "... 1 -> ..."
    )
    # (batch, seqlen)
    accepted = torch.rand(batch, seqlen, device=probs.device) * gather(
        probs_draft, tokens_draft
    ) <= gather(probs[:, :-1], tokens_draft)
    accepted_all = accepted.all(dim=-1)
    # (batch,)
    first_rejected_idx = torch.where(accepted_all, seqlen, accepted.int().argmin(dim=-1))
    probs_diff = torch.clamp(probs[:, :-1] - probs_draft, min=0.0)
    # torch.multinomial can deal with unnormalized probabilities
    # probs_diff /= probs_diff.sum(dim=-1, keepdim=True)
    resample_probs = torch.cat([probs_diff, probs[:, -1:]], dim=1)
    resample_probs = rearrange(
        resample_probs.gather(dim=1, index=repeat(first_rejected_idx, "b -> b 1 d", d=vocab_size)),
        "b 1 d -> b d",
    )
    resample = torch.multinomial(resample_probs, num_samples=1).squeeze(dim=-1)  # (batch,)
    tokens = F.pad(tokens_draft, (0, 1))
    tokens[:, first_rejected_idx] = resample
    return tokens, first_rejected_idx + 1


263
@torch.inference_mode()
264
265
266
267
268
269
270
271
272
273
274
275
276
def decode_speculative(
    input_ids,
    model,
    model_draft,
    max_length,
    speculative_lookahead=3,
    top_k=1,
    top_p=0.0,
    temperature=1.0,
    eos_token_id=None,
    vocab_size=None,
    tensor_parallel=1,
    cg=False,
Tri Dao's avatar
Tri Dao committed
277
    enable_timing=False,
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    debug=False,
):
    """
    TD: WIP, for my own understanding, lightly tested. Only support batch_size == 1 for now.

    Speculative decoding, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p.
    We assume that all sequences in the same batch have the same length.

    Arguments:
        input_ids: (batch, seq_len)
        max_length: int
    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
        sequences: (batch, max_length)
        scores: tuples of (batch, vocab_size)
    """
    batch_size, seqlen_og = input_ids.shape
    assert batch_size == 1, "Speculative decoding implementation only supports batch_size=1"
    assert eos_token_id is None, "Speculative decoding implementation doesn't support eos_token_id"
    if cg:
        if not hasattr(model_draft, "_decoding_cache"):
            model_draft._decoding_cache = None
        model_draft._decoding_cache = update_graph_cache(
            model_draft,
            model_draft._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
Tri Dao's avatar
Tri Dao committed
308
309
            # draft model needs to process either 1 or 2 tokens at a time
            decoding_seqlens=(1, 2),
310
311
312
            tensor_parallel=tensor_parallel,
        )
        inference_params_draft = model_draft._decoding_cache.inference_params
313
        inference_params_draft.reset(max_length, batch_size)
Tri Dao's avatar
Tri Dao committed
314
315
316
317
318
319
320
321
322
323
324
325
326
        if not hasattr(model, "_decoding_cache"):
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            decoding_seqlens=range(1, speculative_lookahead + 2),
            tensor_parallel=tensor_parallel,
        )
        inference_params = model._decoding_cache.inference_params
        inference_params.reset(max_length, batch_size)
327
    else:
328
329
        inference_params_draft = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
330

Tri Dao's avatar
Tri Dao committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    def get_logits(input_ids, inference_params, model, num_last_tokens=1, cg=False):
        decoding = inference_params.seqlen_offset > 0
        if decoding:
            seqlen = input_ids.shape[1]
            # if inference_params.lengths_per_sample is None:
            # TODO: in the case of batched decoding where each sequence has a different length,
            # we need to compute the position_ids for each sequence using lengths_per_sample
            if True:
                cache_seqlens = torch.full(
                    (input_ids.shape[0],),
                    inference_params.seqlen_offset,
                    dtype=torch.int32,
                    device=input_ids.device,
                )
            else:
                cache_seqlens = inference_params.lengths_per_sample
            position_ids = cache_seqlens[:, None] + torch.arange(
                seqlen, dtype=torch.long, device=input_ids.device
            )
        else:
            position_ids = None
        if not cg or not decoding:
            logits = model(
354
355
356
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
Tri Dao's avatar
Tri Dao committed
357
358
                num_last_tokens=num_last_tokens,
            ).logits
359
        else:
Tri Dao's avatar
Tri Dao committed
360
361
362
363
            # NOTE: careful, CUDA graph is set to have num_last_tokens=input_ids.shape[1].
            # This might not be compatible the num_last_tokens used here.
            assert num_last_tokens <= input_ids.shape[1]
            logits = model._decoding_cache.run(
364
                input_ids, position_ids, inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
365
366
            )[:, -num_last_tokens:]
        return logits[..., :vocab_size] if vocab_size is not None else logits
367

Tri Dao's avatar
Tri Dao committed
368
    def sample_tokens(input_ids, get_logits_fn, inference_params, sample_fn, num_tokens=1):
369
370
371
372
373
374
375
        """Sample `num_tokens` tokens from the model, given the previous logits.
        Also return the logits of the sampled tokens.
        Arguments:
            input_ids: (batch, seqlen)
        Return:
            tokens: (batch, num_tokens)
            scores: (batch, num_tokens), which contains @previous_logits and the logits of the next
Tri Dao's avatar
Tri Dao committed
376
                (num_tokens - 1) tokens. The logits of the last token isn't computed.
377
378
        """
        assert num_tokens >= 1
Tri Dao's avatar
Tri Dao committed
379
        sequences, scores = [input_ids], []
380
        for i in range(num_tokens):
Tri Dao's avatar
Tri Dao committed
381
382
383
384
            scores.append(get_logits_fn(sequences[-1], inference_params)[:, -1])
            inference_params.seqlen_offset += sequences[-1].shape[1]
            sequences.append(sample_fn(scores[-1]).unsqueeze(1))
        return torch.cat(sequences[1:], dim=1), torch.stack(scores, dim=1)
385
386
387

    sampling_kwargs = dict(top_k=top_k, top_p=top_p, temperature=temperature)
    sample_fn = partial(sample, **sampling_kwargs)
Tri Dao's avatar
Tri Dao committed
388
389
    get_logits_main = partial(get_logits, model=model, cg=cg)
    get_logits_draft = partial(get_logits, model=model_draft, cg=cg)
390
    sample_tokens_main = partial(
Tri Dao's avatar
Tri Dao committed
391
392
393
394
395
        sample_tokens,
        get_logits_fn=get_logits_main,
        sample_fn=sample_fn,
        inference_params=inference_params,
    )
396
397
    sample_tokens_draft = partial(
        sample_tokens,
Tri Dao's avatar
Tri Dao committed
398
        get_logits_fn=get_logits_draft,
399
400
401
402
403
404
405
406
        sample_fn=sample_fn,
        inference_params=inference_params_draft,
    )

    if debug:
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
Tri Dao's avatar
Tri Dao committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        start = time.time()

    sequences, scores = [input_ids], []
    num_main_model_calls = 0
    num_draft_tokens = 0
    num_accepted_tokens_history = []
    if seqlen_og >= max_length - 1:
        # Don't do speculative sampling, just sample 1 token from the model
        tokens, scores_new = sample_tokens_main(input_ids, num_tokens=1)
        sequences.append(tokens)
        scores.append(scores_new)
    else:
        # Sample from draft model, which produces @n_spec_tokens, and @model
        # will then use to produce between 1 and 1 + @n_spec_tokens tokens.
        # We want seqlen_og + 1 + @n_spec_tokens to be <= @max_length.
        n_spec_tokens = min(speculative_lookahead, max_length - seqlen_og - 1)
        tokens_draft, scores_draft = sample_tokens_draft(input_ids, num_tokens=n_spec_tokens)
        num_draft_tokens += n_spec_tokens
        if debug:
            scores_draft_ref = model_draft(
                torch.cat([input_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((scores_draft - scores_draft_ref[:, :-1]).abs().max())

        # Evaluate the draft tokens with the model
        logits = get_logits_main(
            torch.cat([input_ids, tokens_draft], dim=1),
            inference_params,
            num_last_tokens=n_spec_tokens + 1,
        )
        num_main_model_calls += 1
        if debug:
            logits_ref = model(
                torch.cat([input_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((logits - logits_ref).abs().max())
            # breakpoint()
        tokens, num_generated_tokens = sample_speculative(
            logits, scores_draft, tokens_draft, **sampling_kwargs
        )
        num_accepted_tokens_history.append(num_generated_tokens - 1)
        if debug:
            print(tokens)
            print(num_generated_tokens)
            # breakpoint()
        # TODO: we're using the fact that batch_size == 1
        # TODO: check eos_token_id
        sequences.append(tokens[:1, : num_generated_tokens[0]])
        scores.append(logits[:1, : num_generated_tokens[0]])
        # Note that @model has not evaluated the last sampled token yet, so we'll need to pass
        # that in the next time we call @model.
        num_generated = num_generated_tokens[0].item()
        inference_params.seqlen_offset = seqlen_og + num_generated - 1
        inference_params_draft.seqlen_offset = (
            inference_params.seqlen_offset - 1
            if num_generated > 1
            else inference_params.seqlen_offset
        )
        if debug:
            cur_ids = torch.cat([input_ids, sequences[-1]], dim=1)
            scores_ref = model(cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1).logits
            print((scores[-1] - scores_ref[:, :-1]).abs().max())
            # breakpoint()

    while True:
        # seqlen_offset is total length generated - 1
        if inference_params.seqlen_offset >= max_length - 1:
            break
        if inference_params.seqlen_offset >= max_length - 2:
480
            # Don't do speculative sampling, just sample 1 token from the model
Tri Dao's avatar
Tri Dao committed
481
            tokens, scores_new = sample_tokens_main(sequences[-1][:, -1:], num_tokens=1)
482
483
            sequences.append(tokens)
            scores.append(scores_new)
Tri Dao's avatar
Tri Dao committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            break
        # Sample from draft model
        n_spec_tokens = min(
            speculative_lookahead, max_length - inference_params_draft.seqlen_offset - 2
        )
        # If the main model accepts all the draft tokens, plus it samples one new token,
        # then at the next iteration the draft model need to evaluate the logits of the last draft
        # token and the logits of the newly sampled token. So here we pass in the last 2 tokens
        # of sequences[-1].
        # This exception is when the main model rejects all the draft tokens, in which case we
        # will only have 1 token to pass in.
        tokens_draft, scores_draft = sample_tokens_draft(
            sequences[-1][:, -2:], num_tokens=n_spec_tokens
        )
        num_draft_tokens += n_spec_tokens
        if debug:
            scores_draft_ref = model_draft(
                torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
502
            ).logits
Tri Dao's avatar
Tri Dao committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            print((scores_draft - scores_draft_ref[:, :-1]).abs().max())
            # breakpoint()
        # Evaluate the draft tokens with the model
        logits = get_logits_main(
            torch.cat([sequences[-1][:, -1:], tokens_draft], dim=1),
            inference_params,
            num_last_tokens=n_spec_tokens + 1,
        )  # (batch, n_spec_tokens + 1, vocab_size)
        num_main_model_calls += 1
        if debug:
            logits_ref = model(
                torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((logits - logits_ref).abs().max())
            # breakpoint()
        tokens, num_generated_tokens = sample_speculative(
            logits, scores_draft, tokens_draft, **sampling_kwargs
        )
        num_accepted_tokens_history.append(num_generated_tokens - 1)
        if debug:
            print(tokens)
            print(num_generated_tokens)
525
            # breakpoint()
Tri Dao's avatar
Tri Dao committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        sequences.append(tokens[:1, : num_generated_tokens[0]])
        scores.append(logits[:1, : num_generated_tokens[0]])
        # We've evaluated 1 token from sequences[-1][:, -1:] above, plus
        # num_generated_tokens[0].item() - 1 tokens from the draft model.
        num_generated = num_generated_tokens[0].item()
        inference_params.seqlen_offset += num_generated
        inference_params_draft.seqlen_offset = (
            inference_params.seqlen_offset - 1
            if num_generated > 1
            else inference_params.seqlen_offset
        )
        if debug:
            cur_ids = torch.cat([cur_ids, sequences[-1]], dim=1)
            scores_ref = model(cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1).logits
            print((scores[-1] - scores_ref[:, :-1]).abs().max())
            # breakpoint()

    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
        print(f"Number of calls to main model: {num_main_model_calls}")
        print(
            f"Acceptance rate: {torch.cat(num_accepted_tokens_history).sum().item() / num_draft_tokens * 100:.2f}%"
        )
552
553
554
555
556
557
558
559
560
    sequences = torch.cat(sequences, dim=1)
    scores = torch.cat(scores, dim=1)
    if debug:
        scores_ref = model(sequences).logits
        print((scores - scores_ref[:, seqlen_og - 1 : -1]).abs().max())
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
    return output_cls(sequences=sequences, scores=scores)


Tri Dao's avatar
Tri Dao committed
561
class GenerationMixin:
562
563
564
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        raise NotImplementedError

Tri Dao's avatar
Tri Dao committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    def generate(
        self,
        input_ids,
        max_length,
        top_k=1,
        top_p=0.0,
        temperature=1.0,
        return_dict_in_generate=False,
        output_scores=False,
        **kwargs,
    ):
        output = decode(
            input_ids, self, max_length, top_k=top_k, top_p=top_p, temperature=temperature, **kwargs
        )
Tri Dao's avatar
Tri Dao committed
579
580
581
        if not output_scores:
            output.scores = None
        return output if return_dict_in_generate else output.sequences
Tri Dao's avatar
Tri Dao committed
582
583


Tri Dao's avatar
Tri Dao committed
584
585
586
587
588
589
590
591
592
def allocate_inference_cache(
    max_batch_size,
    max_seqlen,
    nheads,
    headdim,
    layers: Union[int, Sequence],
    device,
    dtype=torch.float16,
):
593
594
595
596
597
    assert dtype in [torch.float16, torch.bfloat16, torch.float32]
    packsize = 4 if dtype == torch.float32 else 8
    assert headdim % packsize == 0
    k_cache_shape = (max_batch_size, nheads, headdim // packsize, max_seqlen, packsize)
    v_cache_shape = (max_batch_size, nheads, max_seqlen, headdim)
598
    kv_cache_shape = (max_batch_size, max_seqlen, 2, nheads, headdim)
599
600
    if isinstance(layers, int):
        layers = range(layers)
601
    return {i: torch.empty(kv_cache_shape, device=device, dtype=dtype) for i in layers}
Tri Dao's avatar
Tri Dao committed
602
603


604
605
606
607
608
609
610
611
612
613
614
615
616
@dataclass
class DecodingCGCache:
    max_batch_size: int = 0
    max_seqlen: int = 0
    device = None
    dtype = None
    callables: dict = field(default_factory=dict)
    mempool = None
    inference_params: Optional[InferenceParams] = None
    run: Optional[Callable] = None


@torch.inference_mode()
Tri Dao's avatar
Tri Dao committed
617
def update_graph_cache(
618
619
620
621
622
    model,
    cache,
    batch_size,
    seqlen_og,
    max_seqlen,
Tri Dao's avatar
Tri Dao committed
623
    decoding_seqlens=(1,),
624
625
626
    tensor_parallel=1,
    dtype=None,
    n_warmups=2,
Tri Dao's avatar
Tri Dao committed
627
):
628
629
630
631
632
633
    if cache is None:
        cache = DecodingCGCache()
    param_example = next(iter(model.parameters()))
    device = param_example.device
    if dtype is None:
        dtype = param_example.dtype
Tri Dao's avatar
Tri Dao committed
634
635
636
637
638
    if (
        (device, dtype) != (cache.device, cache.dtype)
        or batch_size > cache.max_batch_size
        or max_seqlen > cache.max_seqlen
    ):  # Invalidate the cache
639
640
641
642
643
644
        cache.callables = {}
        cache.mempool = None
        cache.inference_params = None
        gc.collect()
        cache.device, cache.dtype = device, dtype
        cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
Tri Dao's avatar
Tri Dao committed
645
        if hasattr(model, "allocate_inference_cache"):
646
            inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
647
        else:
Tri Dao's avatar
Tri Dao committed
648
649
650
651
652
            headdim = getattr(
                model.config,
                "head_dim",
                model.config.hidden_size // model.config.num_attention_heads,
            )
653
            inf_cache = allocate_inference_cache(
Tri Dao's avatar
Tri Dao committed
654
655
656
657
658
659
660
                batch_size,
                max_seqlen,
                model.config.num_attention_heads // tensor_parallel,
                headdim,
                model.config.num_hidden_layers,
                device,
                dtype,
661
            )
662
663
        lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
        cache.inference_params = InferenceParams(
664
            max_seqlen=max_seqlen,
Tri Dao's avatar
Tri Dao committed
665
            max_batch_size=batch_size,
666
            seqlen_offset=seqlen_og,
Tri Dao's avatar
Tri Dao committed
667
668
            key_value_memory_dict=inf_cache,
            lengths_per_sample=lengths_per_sample,
669
670
        )
        cache.mempool = torch.cuda.graphs.graph_pool_handle()
Tri Dao's avatar
Tri Dao committed
671
672
673
    for decoding_seqlen in decoding_seqlens:
        if (batch_size, decoding_seqlen) not in cache.callables:
            cache.callables[batch_size, decoding_seqlen] = capture_graph(
Tri Dao's avatar
Tri Dao committed
674
675
676
                model,
                cache.inference_params,
                batch_size,
Tri Dao's avatar
Tri Dao committed
677
678
                max_seqlen,
                decoding_seqlen=decoding_seqlen,
Tri Dao's avatar
Tri Dao committed
679
680
                mempool=cache.mempool,
                n_warmups=n_warmups,
681
682
683
            )

    def dispatch(input_ids, position_ids, seqlen):
Tri Dao's avatar
Tri Dao committed
684
685
        batch_size, decoding_seqlen = input_ids.shape[:2]
        return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)
686
687

    cache.run = dispatch
688
    cache.inference_params.seqlen_offset = 0  # Reset so it's not confusing
689
690
691
    return cache


Tri Dao's avatar
Tri Dao committed
692
693
694
def capture_graph(
    model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2
):
Tri Dao's avatar
Tri Dao committed
695
    device = next(iter(model.parameters())).device
Tri Dao's avatar
Tri Dao committed
696
697
    input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
    position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
698
    seqlen_offset_og = inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
699
700
    inference_params.seqlen_offset = max_seqlen - decoding_seqlen
    inference_params.lengths_per_sample[:] = inference_params.seqlen_offset
701
702
703
704
705

    # Warmup before capture
    s = torch.cuda.Stream()
    s.wait_stream(torch.cuda.current_stream())
    with torch.cuda.stream(s):
706
        for _ in range(n_warmups):
Tri Dao's avatar
Tri Dao committed
707
708
709
710
            logits = model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
Tri Dao's avatar
Tri Dao committed
711
                num_last_tokens=decoding_seqlen,
Tri Dao's avatar
Tri Dao committed
712
            ).logits
713
        s.synchronize()
714
715
716
717
718
        # This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
        # which requires that graph launch and non-captured launch to not overlap (I think,
        # that's how I interpret the documentation). I'm not sure if this is required.
        if torch.distributed.is_initialized():
            torch.distributed.barrier()
719
720
721
722
723
    torch.cuda.current_stream().wait_stream(s)
    # Captures the graph
    # To allow capture, automatically sets a side stream as the current stream in the context
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph, pool=mempool):
Tri Dao's avatar
Tri Dao committed
724
725
726
727
        logits = model(
            input_ids,
            position_ids=position_ids,
            inference_params=inference_params,
Tri Dao's avatar
Tri Dao committed
728
729
            num_last_tokens=decoding_seqlen,
        ).logits
Tri Dao's avatar
Tri Dao committed
730
731
732

    def run(new_input_ids, new_position_ids, seqlen):
        inference_params.lengths_per_sample[:] = seqlen
733
734
735
        input_ids.copy_(new_input_ids)
        position_ids.copy_(new_position_ids)
        graph.replay()
736
        return logits.clone()
Tri Dao's avatar
Tri Dao committed
737

738
    inference_params.seqlen_offset = seqlen_offset_og
739
    return run