generation.py 30.6 KB
Newer Older
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
3
import gc
Tri Dao's avatar
Tri Dao committed
4
5
import time
from collections import namedtuple
Tri Dao's avatar
Tri Dao committed
6
from dataclasses import dataclass, field
7
from functools import partial
Tri Dao's avatar
Tri Dao committed
8
from typing import Callable, Optional, Sequence, Union
Tri Dao's avatar
Tri Dao committed
9

Tri Dao's avatar
Tri Dao committed
10
import torch
11
12
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
13
14
from torch import Tensor
from torch.profiler import ProfilerActivity, profile, record_function
15
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput
Tri Dao's avatar
Tri Dao committed
16
17
18
19
20
21


@dataclass
class InferenceParams:
    """Inference parameters that are passed to the main model in order
    to efficienly calculate and store the context during inference."""
Tri Dao's avatar
Tri Dao committed
22

23
    max_seqlen: int
Tri Dao's avatar
Tri Dao committed
24
    max_batch_size: int
25
    seqlen_offset: int = 0
Tri Dao's avatar
Tri Dao committed
26
27
    batch_size_offset: int = 0
    key_value_memory_dict: dict = field(default_factory=dict)
28
    lengths_per_sample: Optional[Tensor] = None
Tri Dao's avatar
Tri Dao committed
29

30
31
32
33
34
35
36
    def reset(self, max_seqlen, max_batch_size):
        self.max_seqlen = max_seqlen
        self.max_batch_size = max_batch_size
        self.seqlen_offset = 0
        if self.lengths_per_sample is not None:
            self.lengths_per_sample.zero_()

Tri Dao's avatar
Tri Dao committed
37

38
39
40
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
def modify_logits_for_top_k_filtering(logits, top_k):
41
    """Set the logits for none top-k values to -inf. Done in-place."""
42
43
44
45
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits.masked_fill_(indices_to_remove, float("-Inf"))


46
47
48
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
def modify_logits_for_top_p_filtering(logits, top_p):
49
    """Set the logits for none top-p values to -inf. Done in-place."""
50
    if top_p <= 0.0 or top_p >= 1.0:
51
52
53
54
        return
    # First sort and calculate cumulative sum of probabilities.
    sorted_logits, sorted_indices = torch.sort(logits, descending=False)
    cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
Tri Dao's avatar
Tri Dao committed
55
    # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
56
57
    sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
    # scatter sorted tensors to original indexing
Tri Dao's avatar
Tri Dao committed
58
59
60
    indices_to_remove = sorted_indices_to_remove.scatter(
        1, sorted_indices, sorted_indices_to_remove
    )
61
    logits.masked_fill_(indices_to_remove, float("-inf"))
62
63
64
65
66
67
68
69
70
71
72


def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
    """Sample from top-k logits.
    Arguments:
        logits: Tensor of shape (batch_size, vocab_size)
    """
    if top_k == 1:  # Short-circuit for greedy decoding
        return logits.argmax(dim=-1)
    else:
        if top_p > 0.0:
Tri Dao's avatar
Tri Dao committed
73
            assert top_p <= 1.0, "top-p should be in (0, 1]."
74
75
76
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))  # Safety check
            logits_top, indices = torch.topk(logits, top_k, dim=-1)
77
78
            if temperature != 1.0:
                logits_top /= temperature
79
80
81
            modify_logits_for_top_p_filtering(logits_top, top_p)
            return indices[
                torch.arange(indices.shape[0], device=indices.device),
Tri Dao's avatar
Tri Dao committed
82
                torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
83
84
            ]
        else:
85
86
            # Clone so that when we modify for top_p we don't change the original logits
            logits_top = logits / temperature if temperature != 1.0 else logits.clone()
87
            modify_logits_for_top_p_filtering(logits_top, top_p)
Tri Dao's avatar
Tri Dao committed
88
89
90
            return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
                dim=-1
            )
91
92


Tri Dao's avatar
Tri Dao committed
93
@torch.inference_mode()
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
105
def decode(
    input_ids,
    model,
    max_length,
    top_k=1,
    top_p=0.0,
    temperature=1.0,
    eos_token_id=None,
    teacher_outputs=None,
    vocab_size=None,
    tensor_parallel=1,
    cg=False,
Tri Dao's avatar
Tri Dao committed
106
    enable_timing=False,
Tri Dao's avatar
Tri Dao committed
107
):
108
109
110
111
    """Decoding, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p.
Tri Dao's avatar
Tri Dao committed
112
    We assume that all sequences in the same batch have the same length.
113

Tri Dao's avatar
Tri Dao committed
114
115
116
    Arguments:
        input_ids: (batch, seq_len)
        max_length: int
117
118
        teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
            logits, the next token is taken from the teacher_outputs. Useful for testing.
119
    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
Tri Dao's avatar
Tri Dao committed
120
121
122
123
        sequences: (batch, max_length)
        scores: tuples of (batch, vocab_size)
    """
    batch_size, seqlen_og = input_ids.shape
Tri Dao's avatar
Tri Dao committed
124
    teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
125
    if cg:
Tri Dao's avatar
Tri Dao committed
126
        if not hasattr(model, "_decoding_cache"):
127
128
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
Tri Dao's avatar
Tri Dao committed
129
130
131
132
133
134
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            tensor_parallel=tensor_parallel,
135
136
        )
        inference_params = model._decoding_cache.inference_params
137
        inference_params.reset(max_length, batch_size)
138
    else:
139
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
Tri Dao's avatar
Tri Dao committed
140

Tri Dao's avatar
Tri Dao committed
141
    def get_logits(input_ids, inference_params):
142
        decoding = inference_params.seqlen_offset > 0
Tri Dao's avatar
Tri Dao committed
143
144
145
        if decoding:
            position_ids = torch.full(
                (batch_size, 1),
146
                inference_params.seqlen_offset,
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
152
153
                dtype=torch.long,
                device=input_ids.device,
            )
        else:
            position_ids = None
        if not cg or not decoding:
            logits = model(
Tri Dao's avatar
Tri Dao committed
154
155
156
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
157
158
                num_last_tokens=1,
            ).logits.squeeze(dim=1)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
            logits = model._decoding_cache.run(
161
                input_ids, position_ids, inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
162
            ).clone()
Tri Dao's avatar
Tri Dao committed
163
        return logits[..., :vocab_size] if vocab_size is not None else logits
Tri Dao's avatar
Tri Dao committed
164

Tri Dao's avatar
Tri Dao committed
165
    def sample_tokens(logits, inference_params):
166
        if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
Tri Dao's avatar
Tri Dao committed
167
            token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
Tri Dao's avatar
Tri Dao committed
168
        else:
169
            token = teacher_outputs[:, inference_params.seqlen_offset]
170
171
        # return rearrange(token, "b -> b 1")
        return token.unsqueeze(1)
Tri Dao's avatar
Tri Dao committed
172
173

    def should_stop(current_token, inference_params):
174
        if inference_params.seqlen_offset == 0:
Tri Dao's avatar
Tri Dao committed
175
176
177
            return False
        if eos_token_id is not None and (current_token == eos_token_id).all():
            return True
178
        if inference_params.seqlen_offset >= max_length - 1:
Tri Dao's avatar
Tri Dao committed
179
180
181
182
183
184
185
186
187
188
189
190
191
            return True
        return False

    start = torch.cuda.Event(enable_timing=enable_timing)
    end = torch.cuda.Event(enable_timing=enable_timing)

    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        start.record()
    scores, sequences = [], [input_ids]
    while not should_stop(sequences[-1], inference_params):
        scores.append(get_logits(sequences[-1], inference_params))
192
        inference_params.seqlen_offset += sequences[-1].shape[1]
Tri Dao's avatar
Tri Dao committed
193
194
195
196
197
198
199
        sequences.append(sample_tokens(scores[-1], inference_params))
    if enable_timing:
        end.record()
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
200
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
201
    return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
Tri Dao's avatar
Tri Dao committed
202
203


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def sample_speculative(logits, logits_draft, tokens_draft, top_k=1, top_p=0.0, temperature=1.0):
    """Algorithm 1 from [1]
    [1] Fast Inference from Transformers via Speculative Decoding
    Yaniv Leviathan, Matan Kalman, Yossi Matias
    https://arxiv.org/abs/2211.17192

    Arguments:
        logits: Tensor of shape (batch_size, seqlen + 1, vocab_size)
        logits_draft: Tensor of shape (batch_size, seqlen, vocab_size)
        tokens_draft: Tensor of shape (batch_size, seqlen)
    Return:
        tokens: Tensor of shape (batch_size, seqlen + 1)
        num_generated_tokens: Tensor of shape (batch_size), with value in [1, seqlen + 1].
            For each sequence in the batch, the number of valid tokens that were sampled by
            speculative sampling.
    """
    batch, seqlen_p_1, vocab_size = logits.shape
    seqlen = seqlen_p_1 - 1
    assert logits_draft.shape == (batch, seqlen, vocab_size)
    assert tokens_draft.shape == (batch, seqlen)
    assert tokens_draft.dtype in [torch.int64, torch.int32]
    # TODO: if top_k = 1 we can simplify things and only work with indices
    if top_p > 0.0:
        assert top_p <= 1.0, "top-p should be in (0, 1]."
    # Clone so that when we modify for top_p we don't change the original logits
    logits = logits / temperature if temperature != 1.0 else logits.clone()
    logits_draft = logits_draft / temperature if temperature != 1.0 else logits_draft.clone()
    if top_k > 0:
        top_k = min(top_k, logits.size(-1))  # Safety check
        modify_logits_for_top_k_filtering(logits, top_k)
        modify_logits_for_top_k_filtering(logits_draft, top_k)
    modify_logits_for_top_p_filtering(logits, top_p)
    modify_logits_for_top_p_filtering(logits_draft, top_p)
    probs = torch.softmax(logits, dim=-1)
    probs_draft = torch.softmax(logits_draft, dim=-1)
    gather = lambda probs, tokens: rearrange(
        probs.gather(dim=-1, index=rearrange(tokens, "... -> ... 1")), "... 1 -> ..."
    )
    # (batch, seqlen)
    accepted = torch.rand(batch, seqlen, device=probs.device) * gather(
        probs_draft, tokens_draft
    ) <= gather(probs[:, :-1], tokens_draft)
    accepted_all = accepted.all(dim=-1)
    # (batch,)
    first_rejected_idx = torch.where(accepted_all, seqlen, accepted.int().argmin(dim=-1))
    probs_diff = torch.clamp(probs[:, :-1] - probs_draft, min=0.0)
    # torch.multinomial can deal with unnormalized probabilities
    # probs_diff /= probs_diff.sum(dim=-1, keepdim=True)
    resample_probs = torch.cat([probs_diff, probs[:, -1:]], dim=1)
    resample_probs = rearrange(
        resample_probs.gather(dim=1, index=repeat(first_rejected_idx, "b -> b 1 d", d=vocab_size)),
        "b 1 d -> b d",
    )
    resample = torch.multinomial(resample_probs, num_samples=1).squeeze(dim=-1)  # (batch,)
    tokens = F.pad(tokens_draft, (0, 1))
    tokens[:, first_rejected_idx] = resample
    return tokens, first_rejected_idx + 1


263
@torch.inference_mode()
264
265
266
267
268
269
270
271
272
273
274
275
276
def decode_speculative(
    input_ids,
    model,
    model_draft,
    max_length,
    speculative_lookahead=3,
    top_k=1,
    top_p=0.0,
    temperature=1.0,
    eos_token_id=None,
    vocab_size=None,
    tensor_parallel=1,
    cg=False,
Tri Dao's avatar
Tri Dao committed
277
    enable_timing=False,
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    debug=False,
):
    """
    TD: WIP, for my own understanding, lightly tested. Only support batch_size == 1 for now.

    Speculative decoding, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p.
    We assume that all sequences in the same batch have the same length.

    Arguments:
        input_ids: (batch, seq_len)
        max_length: int
    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
        sequences: (batch, max_length)
        scores: tuples of (batch, vocab_size)
    """
    batch_size, seqlen_og = input_ids.shape
    assert batch_size == 1, "Speculative decoding implementation only supports batch_size=1"
    assert eos_token_id is None, "Speculative decoding implementation doesn't support eos_token_id"
    if cg:
        if not hasattr(model_draft, "_decoding_cache"):
            model_draft._decoding_cache = None
        model_draft._decoding_cache = update_graph_cache(
            model_draft,
            model_draft._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            tensor_parallel=tensor_parallel,
        )
        inference_params_draft = model_draft._decoding_cache.inference_params
311
312
        inference_params_draft.reset(max_length, batch_size)
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
313
    else:
314
315
        inference_params_draft = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
316
317
318
319
320
321
322
323
324
325
326

    def logits_forward_fn(model, input_ids, position_ids, inference_params, cg=False):
        if not cg:
            return model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
                num_last_tokens=1,
            ).logits.squeeze(dim=1)
        else:
            return model._decoding_cache.run(
327
                input_ids, position_ids, inference_params.seqlen_offset
328
329
330
331
332
333
334
            ).clone()

    logits_postprocess_fn = (
        lambda logits: logits[..., :vocab_size] if vocab_size is not None else logits
    )

    def sample_tokens(
Tri Dao's avatar
Tri Dao committed
335
336
337
338
339
340
341
342
        input_ids,
        model,
        inference_params,
        sample_fn,
        num_tokens=1,
        cg=False,
        decoding=True,
        last_token_logits=False,
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    ):
        """Sample `num_tokens` tokens from the model, given the previous logits.
        Also return the logits of the sampled tokens.
        Arguments:
            input_ids: (batch, seqlen)
            decoding: whether we're in the decoding phase or the prefilling phase. Prefill doesn't
                need special position_ids.
            last_token_logits: whether to return the logits of the last token. Normally we don't need this.
                However, for speculative sampling, if the main model accepts all the draft tokens, plus it
                samples one new token, then by right at the next iteration the draft model need to evaluate
                the logits of the last draft token and the logits of the newly sampled token.
                This makes implementation more complicated. So here we just evaluate the logits of the last
                token in the draft model to simplify the implementation.
        Return:
            tokens: (batch, num_tokens)
            scores: (batch, num_tokens), which contains @previous_logits and the logits of the next
                (num_tokens - 1) tokens. The logits of the last token isn't computed unless last_token_logits=True.
                In which case we have scores of shape (batch, num_tokens + 1)
        """
        batch_size, seqlen = input_ids.shape
        assert num_tokens >= 1
        sequences = []
        if decoding:
            assert seqlen == 1
Tri Dao's avatar
Tri Dao committed
367
368
            position_ids = repeat(
                torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
369
                + inference_params.seqlen_offset,
Tri Dao's avatar
Tri Dao committed
370
371
                "s -> b s",
                b=batch_size,
372
            )
Tri Dao's avatar
Tri Dao committed
373
374
            # position_ids = torch.full(
            #     (batch_size, 1),
375
            #     inference_params.seqlen_offset,
Tri Dao's avatar
Tri Dao committed
376
377
378
            #     dtype=torch.long,
            #     device=input_ids.device,
            # )
379
380
381
382
383
        else:
            position_ids = None
        logits = logits_postprocess_fn(
            logits_forward_fn(model, input_ids, position_ids, inference_params, cg=decoding and cg)
        )
384
        inference_params.seqlen_offset += input_ids.shape[1]
385
386
387
388
389
390
391
        scores = [logits]
        next_token = sample_fn(logits)
        sequences.append(next_token)
        for i in range(num_tokens):
            if i < num_tokens - 1 or last_token_logits:
                position_ids = torch.full(
                    (batch_size, 1),
392
                    inference_params_draft.seqlen_offset,
393
394
395
396
397
                    dtype=torch.long,
                    device=input_ids.device,
                )
                logits = logits_postprocess_fn(
                    logits_forward_fn(
Tri Dao's avatar
Tri Dao committed
398
399
400
401
402
                        model,
                        rearrange(next_token, "b -> b 1"),
                        position_ids,
                        inference_params,
                        cg=cg,
403
404
                    )
                )
405
                inference_params.seqlen_offset += 1
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
                scores.append(logits)
            if i < num_tokens - 1:
                next_token = sample_fn(logits)
                sequences.append(next_token)
        return torch.stack(sequences, dim=1), torch.stack(scores, dim=1)

    sampling_kwargs = dict(top_k=top_k, top_p=top_p, temperature=temperature)
    sample_fn = partial(sample, **sampling_kwargs)
    sample_tokens_main = partial(
        sample_tokens, model=model, sample_fn=sample_fn, inference_params=inference_params, cg=False
    )  # main model doesn't use CUDA graph
    sample_tokens_draft = partial(
        sample_tokens,
        model=model_draft,
        sample_fn=sample_fn,
        last_token_logits=True,
        inference_params=inference_params_draft,
Tri Dao's avatar
Tri Dao committed
423
        cg=cg,
424
425
426
427
428
429
430
431
432
    )

    if debug:
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
    sequences = [input_ids]
    scores = []
    with torch.inference_mode():
Tri Dao's avatar
Tri Dao committed
433
        if enable_timing:
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            if tensor_parallel > 1:
                torch.distributed.barrier()
            torch.cuda.synchronize()
            start = time.time()

        if seqlen_og >= max_length - 1:
            # Don't do speculative sampling, just sample 1 token from the model
            tokens, scores_new = sample_tokens_main(input_ids, num_tokens=1, decoding=False)
            sequences.append(tokens)
            scores.append(scores_new)
        else:
            # Sample from draft model, which produces @n_spec_tokens, and @model
            # will then use to produce between 1 and 1 + @n_spec_tokens tokens.
            # We want seqlen_og + 1 + @n_spec_tokens to be <= @max_length.
            n_spec_tokens = min(speculative_lookahead, max_length - seqlen_og - 1)
            tokens_draft, scores_draft = sample_tokens_draft(
                input_ids,
                num_tokens=n_spec_tokens,
                decoding=False,
            )
            if debug:
                scores_draft_ref = model_draft(
                    torch.cat([input_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
                ).logits
                print((scores_draft[:, :-1] - scores_draft_ref[:, :-1]).abs().max())

            # Evaluate the draft tokens with the model
            logits = model(
                torch.cat([input_ids, tokens_draft], dim=1),
                inference_params=inference_params,
                num_last_tokens=n_spec_tokens + 1,
            ).logits
            logits = logits_postprocess_fn(logits)
            tokens, num_generated_tokens = sample_speculative(
                logits, scores_draft[:, :-1], tokens_draft, **sampling_kwargs
            )
            if debug:
                print(tokens)
                print(num_generated_tokens)
                # breakpoint()
            # TODO: we're using the fact that batch_size == 1
            # TODO: check eos_token_id
            sequences.append(tokens[:1, : num_generated_tokens[0]])
            scores.append(logits[:1, : num_generated_tokens[0]])
            # Note that @model has not evaluated the last sampled token yet, so we'll need to pass
            # that in the next time we call @model.
480
481
            inference_params.seqlen_offset = seqlen_og + num_generated_tokens[0].item() - 1
            inference_params_draft.seqlen_offset = inference_params.seqlen_offset
482
483
484
485
486
487
488
489
            if debug:
                cur_ids = torch.cat([input_ids, sequences[-1]], dim=1)
                scores_ref = model(
                    cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1
                ).logits
                print((scores[-1] - scores_ref[:, :-1]).abs().max())

        while True:
490
491
            # seqlen_offset is total length generated - 1
            if inference_params.seqlen_offset >= max_length - 1:
492
                break
493
            if inference_params.seqlen_offset >= max_length - 2:
494
495
496
497
498
499
500
                # Don't do speculative sampling, just sample 1 token from the model
                tokens, scores_new = sample_tokens_main(sequences[-1][:, -1:], num_tokens=1)
                sequences.append(tokens)
                scores.append(scores_new)
                break
            # Sample from draft model
            n_spec_tokens = min(
501
                speculative_lookahead, max_length - inference_params_draft.seqlen_offset - 2
502
503
504
505
506
507
508
509
510
511
512
513
            )
            tokens_draft, scores_draft = sample_tokens_draft(
                sequences[-1][:, -1:], num_tokens=n_spec_tokens
            )
            if debug:
                scores_draft_ref = model_draft(
                    torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
                ).logits
                print((scores_draft[:, :-1] - scores_draft_ref[:, :-1]).abs().max())
            # Evaluate the draft tokens with the model
            position_ids = repeat(
                torch.arange(
514
                    inference_params.seqlen_offset,
515
                    # 1 extra token from last time that hasn't been passed through model
516
                    inference_params.seqlen_offset + n_spec_tokens + 1,
517
518
519
520
521
522
523
524
525
526
527
528
                    dtype=torch.long,
                    device=input_ids.device,
                ),
                "s -> b s",
                b=batch_size,
            )
            logits = model(
                torch.cat([sequences[-1][:, -1:], tokens_draft], dim=1),
                position_ids=position_ids,
                inference_params=inference_params,
            ).logits  # (batch, n_spec_tokens, vocab_size)
            logits = logits_postprocess_fn(logits)
529
            inference_params.seqlen_offset += 1
530
531
532
533
534
535
536
537
538
539
540
541
542
            if debug:
                logits_ref = model(
                    torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
                ).logits
                print((logits - logits_ref).abs().max())
            tokens, num_generated_tokens = sample_speculative(
                logits, scores_draft[:, :-1], tokens_draft, **sampling_kwargs
            )
            if debug:
                print(tokens)
                print(num_generated_tokens)
            sequences.append(tokens[:1, : num_generated_tokens[0]])
            scores.append(logits[:1, : num_generated_tokens[0]])
543
544
            inference_params.seqlen_offset += num_generated_tokens[0].item() - 1
            inference_params_draft.seqlen_offset = inference_params.seqlen_offset
545
546
547
548
549
550
551
552
            # breakpoint()
            if debug:
                cur_ids = torch.cat([cur_ids, sequences[-1]], dim=1)
                scores_ref = model(
                    cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1
                ).logits
                print((scores[-1] - scores_ref[:, :-1]).abs().max())

Tri Dao's avatar
Tri Dao committed
553
        if enable_timing:
554
555
556
557
558
559
560
561
562
563
564
565
566
            if tensor_parallel > 1:
                torch.distributed.barrier()
            torch.cuda.synchronize()
            print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
    sequences = torch.cat(sequences, dim=1)
    scores = torch.cat(scores, dim=1)
    if debug:
        scores_ref = model(sequences).logits
        print((scores - scores_ref[:, seqlen_og - 1 : -1]).abs().max())
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
    return output_cls(sequences=sequences, scores=scores)


Tri Dao's avatar
Tri Dao committed
567
class GenerationMixin:
568
569
570
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        raise NotImplementedError

Tri Dao's avatar
Tri Dao committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    def generate(
        self,
        input_ids,
        max_length,
        top_k=1,
        top_p=0.0,
        temperature=1.0,
        return_dict_in_generate=False,
        output_scores=False,
        **kwargs,
    ):
        output = decode(
            input_ids, self, max_length, top_k=top_k, top_p=top_p, temperature=temperature, **kwargs
        )
Tri Dao's avatar
Tri Dao committed
585
586
587
        if not output_scores:
            output.scores = None
        return output if return_dict_in_generate else output.sequences
Tri Dao's avatar
Tri Dao committed
588
589


Tri Dao's avatar
Tri Dao committed
590
591
592
593
594
595
596
597
598
def allocate_inference_cache(
    max_batch_size,
    max_seqlen,
    nheads,
    headdim,
    layers: Union[int, Sequence],
    device,
    dtype=torch.float16,
):
599
600
601
602
603
    assert dtype in [torch.float16, torch.bfloat16, torch.float32]
    packsize = 4 if dtype == torch.float32 else 8
    assert headdim % packsize == 0
    k_cache_shape = (max_batch_size, nheads, headdim // packsize, max_seqlen, packsize)
    v_cache_shape = (max_batch_size, nheads, max_seqlen, headdim)
604
    kv_cache_shape = (max_batch_size, max_seqlen, 2, nheads, headdim)
605
606
    if isinstance(layers, int):
        layers = range(layers)
607
    return {i: torch.empty(kv_cache_shape, device=device, dtype=dtype) for i in layers}
Tri Dao's avatar
Tri Dao committed
608
609
610
611
612
613
614
615


def seqlen_to_seqlen_type(seqlen: int) -> int:
    """Convert sequence length to a seqlen_type.
    This is used to determine which cuda graph to use.
    Arguments:
        seqlen: int
    """
616
    return 0
Tri Dao's avatar
Tri Dao committed
617
618


Tri Dao's avatar
Tri Dao committed
619
def seqlen_type_to_max_seqlen(seqlen_type: int) -> int:
620
621
    assert seqlen_type in [0]
    return 2**32
Tri Dao's avatar
Tri Dao committed
622
623


624
625
626
627
628
629
630
631
632
633
634
635
636
@dataclass
class DecodingCGCache:
    max_batch_size: int = 0
    max_seqlen: int = 0
    device = None
    dtype = None
    callables: dict = field(default_factory=dict)
    mempool = None
    inference_params: Optional[InferenceParams] = None
    run: Optional[Callable] = None


@torch.inference_mode()
Tri Dao's avatar
Tri Dao committed
637
def update_graph_cache(
638
639
640
641
642
643
644
645
    model,
    cache,
    batch_size,
    seqlen_og,
    max_seqlen,
    tensor_parallel=1,
    dtype=None,
    n_warmups=2,
Tri Dao's avatar
Tri Dao committed
646
):
647
648
649
650
651
652
    if cache is None:
        cache = DecodingCGCache()
    param_example = next(iter(model.parameters()))
    device = param_example.device
    if dtype is None:
        dtype = param_example.dtype
Tri Dao's avatar
Tri Dao committed
653
654
655
656
657
    if (
        (device, dtype) != (cache.device, cache.dtype)
        or batch_size > cache.max_batch_size
        or max_seqlen > cache.max_seqlen
    ):  # Invalidate the cache
658
659
660
661
662
663
        cache.callables = {}
        cache.mempool = None
        cache.inference_params = None
        gc.collect()
        cache.device, cache.dtype = device, dtype
        cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
Tri Dao's avatar
Tri Dao committed
664
        if hasattr(model, "allocate_inference_cache"):
665
            inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
666
        else:
Tri Dao's avatar
Tri Dao committed
667
668
669
670
671
            headdim = getattr(
                model.config,
                "head_dim",
                model.config.hidden_size // model.config.num_attention_heads,
            )
672
            inf_cache = allocate_inference_cache(
Tri Dao's avatar
Tri Dao committed
673
674
675
676
677
678
679
                batch_size,
                max_seqlen,
                model.config.num_attention_heads // tensor_parallel,
                headdim,
                model.config.num_hidden_layers,
                device,
                dtype,
680
            )
681
682
        lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
        cache.inference_params = InferenceParams(
683
            max_seqlen=max_seqlen,
Tri Dao's avatar
Tri Dao committed
684
            max_batch_size=batch_size,
685
            seqlen_offset=seqlen_og,
Tri Dao's avatar
Tri Dao committed
686
687
            key_value_memory_dict=inf_cache,
            lengths_per_sample=lengths_per_sample,
688
689
690
        )
        cache.mempool = torch.cuda.graphs.graph_pool_handle()
    for s_type in range(seqlen_to_seqlen_type(seqlen_og), seqlen_to_seqlen_type(max_seqlen) + 1):
691
        if (batch_size, s_type) not in cache.callables:
Tri Dao's avatar
Tri Dao committed
692
            max_seqlen_ = min(max(seqlen_og, seqlen_type_to_max_seqlen(s_type)), max_seqlen)
693
            cache.callables[batch_size, s_type] = capture_graph(
Tri Dao's avatar
Tri Dao committed
694
695
696
697
698
699
                model,
                cache.inference_params,
                batch_size,
                max_seqlen_,
                mempool=cache.mempool,
                n_warmups=n_warmups,
700
701
702
            )

    def dispatch(input_ids, position_ids, seqlen):
703
        batch_size = input_ids.shape[0]
Tri Dao's avatar
Tri Dao committed
704
705
706
        return cache.callables[batch_size, seqlen_to_seqlen_type(seqlen)](
            input_ids, position_ids, seqlen
        )
707
708

    cache.run = dispatch
709
    cache.inference_params.seqlen_offset = 0  # Reset so it's not confusing
710
711
712
    return cache


Tri Dao's avatar
Tri Dao committed
713
def capture_graph(model, inference_params, batch_size, max_seqlen, mempool=None, n_warmups=2):
Tri Dao's avatar
Tri Dao committed
714
715
716
    device = next(iter(model.parameters())).device
    input_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
    position_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
717
    seqlen_offset_og = inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
718
719
    # TD [2023-04-14]: important for correctness of the FT's attention kernel, as seqlen_cpu is
    # used to determine the size of smem. Hence seqlen_cpu must be >= lengths_per_sample.
720
    inference_params.seqlen_offset = max_seqlen - 1
Tri Dao's avatar
Tri Dao committed
721
    inference_params.lengths_per_sample[:] = max_seqlen - 1
722
723
724
725
726

    # Warmup before capture
    s = torch.cuda.Stream()
    s.wait_stream(torch.cuda.current_stream())
    with torch.cuda.stream(s):
727
        for _ in range(n_warmups):
Tri Dao's avatar
Tri Dao committed
728
729
730
731
            logits = model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
732
                num_last_tokens=1,
Tri Dao's avatar
Tri Dao committed
733
            ).logits
734
        s.synchronize()
735
736
737
738
739
        # This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
        # which requires that graph launch and non-captured launch to not overlap (I think,
        # that's how I interpret the documentation). I'm not sure if this is required.
        if torch.distributed.is_initialized():
            torch.distributed.barrier()
740
741
742
743
744
    torch.cuda.current_stream().wait_stream(s)
    # Captures the graph
    # To allow capture, automatically sets a side stream as the current stream in the context
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph, pool=mempool):
Tri Dao's avatar
Tri Dao committed
745
746
747
748
        logits = model(
            input_ids,
            position_ids=position_ids,
            inference_params=inference_params,
749
750
            num_last_tokens=1,
        ).logits.squeeze(dim=1)
Tri Dao's avatar
Tri Dao committed
751
752
753

    def run(new_input_ids, new_position_ids, seqlen):
        inference_params.lengths_per_sample[:] = seqlen
754
755
756
        input_ids.copy_(new_input_ids)
        position_ids.copy_(new_position_ids)
        graph.replay()
757
        return logits.clone()
Tri Dao's avatar
Tri Dao committed
758

759
    inference_params.seqlen_offset = seqlen_offset_og
760
    return run