flash_fwd_kernel.h 74.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1, typename Tensor2>
inline __device__ void softmax_rescale_o(Tensor0 &scores, Tensor1 &scores_max, Tensor1 &scores_sum,
                                         Tensor2 &acc_o, float softmax_scale_log2) {
    if (Is_first) {
        flash::template reduce_max</*zero_init=*/true>(scores, scores_max);
        flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
        flash::reduce_sum(scores, scores_sum);
    } else {
        Tensor scores_max_prev = make_fragment_like(scores_max);
Tri Dao's avatar
Tri Dao committed
33
        cute::copy(scores_max, scores_max_prev);
Tri Dao's avatar
Tri Dao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        flash::template reduce_max</*zero_init=*/false>(scores, scores_max);
        // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
        Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
        #pragma unroll
        for (int mi = 0; mi < size(scores_max); ++mi) {
            float scores_max_cur = !Check_inf
                ? scores_max(mi)
                : (scores_max(mi) == -INFINITY ? 0.0f : scores_max(mi));
            float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
            scores_sum(mi) *= scores_scale;
            #pragma unroll
            for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale; }
        }
        flash::scale_apply_exp2(scores, scores_max, softmax_scale_log2);
        Tensor scores_sum_cur = make_fragment_like(scores_sum);
        flash::reduce_sum(scores, scores_sum_cur);
        #pragma unroll
        for (int mi = 0; mi < size(scores_sum); ++mi) { scores_sum(mi) += scores_sum_cur(mi); }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename TiledCopy>
inline __device__ void write_softmax_to_gmem(
Tri Dao's avatar
Tri Dao committed
59
    Tensor<Engine0, Layout0> const &tOrP, Tensor<Engine1, Layout1> &tPgP, TiledCopy gmem_tiled_copy_P
Tri Dao's avatar
Tri Dao committed
60
61
62
63
64
65
66
67
) {
    // Reshape tOrP from (8, MMA_M, MMA_N) to (8, MMA_M * MMA_N)
    Layout l = tOrP.layout();
    Tensor tPrP = make_tensor(tOrP.data(), make_layout(get<0>(l), make_layout(get<1>(l), get<2>(l))));
    CUTE_STATIC_ASSERT_V(size<2>(tPgP) == _1{});
    CUTE_STATIC_ASSERT_V(size<1>(tPrP) == size<1>(tPgP));
    #pragma unroll
    for (int mi = 0; mi < size<1>(tPrP); ++mi) {
Tri Dao's avatar
Tri Dao committed
68
        cute::copy(gmem_tiled_copy_P, tPrP(_, mi), tPgP(_, mi, 0));
Tri Dao's avatar
Tri Dao committed
69
70
71
72
73
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
74
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_M = kBlockM / decltype(size<0>(typename Kernel_traits::TiledMma::TiledShape_MNK{}))::value;

93
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
94
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
Tri Dao's avatar
Tri Dao committed
95

Tri Dao's avatar
Tri Dao committed
96
    const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
97
    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
Tri Dao's avatar
Tri Dao committed
98
    if (Is_causal || Is_local) {
99
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
100
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
101
102
103
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    }
    // We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
    // Otherwise we might read OOB elements from gK and gV.
    if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
        // Save seed and offset for backward. If we don't have this here, the 0-th thread block might
        // exit early and no one saves the rng state.
        if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
            auto seeds = at::cuda::philox::unpack(params.philox_args);
            params.rng_state[0] = std::get<0>(seeds);
            params.rng_state[1] = std::get<1>(seeds);
        }
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
        const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
        Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                                Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                make_stride(params.o_row_stride, _1{}));
        Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                                  Shape<Int<kBlockM>>{}, Stride<_1>{});

        typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
        Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
        Tensor tOrO = make_tensor<Element>(shape(tOgO));
        clear(tOrO);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        if (!Is_even_K) {
135
            #pragma unroll
136
137
138
139
140
141
142
143
144
145
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgO); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
146
        }
147
        return;
Tri Dao's avatar
Tri Dao committed
148
    }
Tri Dao's avatar
Tri Dao committed
149
    // if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
Tri Dao's avatar
Tri Dao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});

Tri Dao's avatar
Tri Dao committed
187
188
189
190
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyP gmem_tiled_copy_P;
    auto gmem_thr_copy_P = gmem_tiled_copy_P.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tPgP = gmem_thr_copy_P.partition_D(gP);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
212
213
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
214
215
216
217
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
218
219
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
220
221
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

Tri Dao's avatar
Tri Dao committed
222
223
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // TODO: this might need to change if we change the mma instruction in SM70
    Tensor scores_max = make_tensor<ElementAccum>(Shape<Int<2 * size<1>(acc_o)>>{});
    Tensor scores_sum = make_fragment_like(scores_max);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    Tensor tQrQ = make_fragment_like(tQgQ);
    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
274
275
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // Copy rmem to smem
    // // copy(tQrQ, tQsQ);
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
291
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
292
293
294
295
296
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
297
298
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
299
300
301
302
303
304
305
306
307
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
308
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
309
310
311
312
313
314
    }

    auto seeds = at::cuda::philox::unpack(params.philox_args);
    unsigned long long seed = std::get<0>(seeds);
    unsigned long long offset = std::get<1>(seeds) + (bidb * params.h + bidh) * 32 + tidx % 32;

315
    // Save seed and offset for backward.
316
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
317
318
319
320
        params.rng_state[0] = seed;
        params.rng_state[1] = std::get<1>(seeds);
    }

Tri Dao's avatar
Tri Dao committed
321
322
323
324
325
326
327
328
    clear(acc_o);

    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

329
330
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
331
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
332
        ? 1
Tri Dao's avatar
Tri Dao committed
333
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
334
335
336
337
338
339
340
341
342
343
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
344
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
345
346
        } else {
            // Clear the smem tiles to account for predicated off loads
347
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
348
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
349
350
351
352
353
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
354
355
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
356
357
358
359
360
        );
        // if (cute::thread0()) { print(acc_s); }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
Tri Dao's avatar
Tri Dao committed
361
        // if (cute::thread0()) { print_tensor(scores); }
Tri Dao's avatar
Tri Dao committed
362
363
364
        // We don't put the masking before the matmul S = Q K^T because we don't clear sK
        // for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
        // can produce Inf / NaN.
Tri Dao's avatar
Tri Dao committed
365
        if (!Is_causal && !Is_local) {
366
            if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
Tri Dao's avatar
Tri Dao committed
367
368
369
370
371
372
373
374
375
376
377
378
        } else {
            // Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
            // Tensor taccScS = thr_mma.partition_C(caccS);                           // (MMA,MMA_M,MMA_N)
            // static_assert(decltype(size<0>(taccScS))::value == 4);
            // // Convert to ((2, 2), MMA_M, MMA_N) then take only the row indices.
            // Tensor idx_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
            // Tensor idx_rowcol = make_tensor(taccScS.data(), flash::convert_layout_acc_rowcol(taccScS.layout()));
            // flash::apply_mask_causal_w_idx(scores, idx_rowcol, n_block * kBlockN, binfo.actual_seqlen_k,
            //                               m_block * kBlockM);
            // Idk why it's get<1> and not get<0> of the stride.
            // if (cute::thread0()) { print(idx_row.layout()); print(stride<1>(idx_row)); printf("stride = %d \n", get<1>(stride<1>(idx_row))); }
            // I can't get the stride from idx_row
Tri Dao's avatar
Tri Dao committed
379
380
381
382
383
384
385
386
387
388
            flash::apply_mask_local</*HasWSLeft=*/Is_local>(
                scores, n_block * kBlockN, binfo.actual_seqlen_k,
                // m_block * kBlockM + get<0>(idx_row(0)),
                m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
                binfo.actual_seqlen_q, kNWarps * 16,
                params.window_size_left, params.window_size_right
                // m_block * kBlockM + (tidx / 32) * 16, kNWarps * 16
                // m_block * kBlockM + (tidx / 32) * (kBlockM / kNWarps), 16
            );
            // if (cute::thread0()) { print_tensor(scores); }
Tri Dao's avatar
Tri Dao committed
389
390
391
392
        }

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
393
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
394
395
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
396
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
397
398
399
400
401
402
403
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
404
405
            ? softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
            : softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
406
407
408
409
410
411

        // Convert scores from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
412
413
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
414
415
        if (Return_softmax) {
            Tensor tOrP_copy = make_fragment_like(tOrP);
Tri Dao's avatar
Tri Dao committed
416
            cute::copy(tOrP, tOrP_copy);
Tri Dao's avatar
Tri Dao committed
417
418
419
420
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, kNWarps
            );
Tri Dao's avatar
Tri Dao committed
421
            flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
Tri Dao's avatar
Tri Dao committed
422
423
424
425
426
427
428
429
            tPgP.data() = tPgP.data() + (-kBlockN);
        }
        if (Is_dropout) {
            flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
                                 block_row_idx, block_col_idx, kNWarps);
        }
        // if (cute::thread0()) { print(tOrP); }

Tri Dao's avatar
Tri Dao committed
430
        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
431
432
433
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
Tri Dao's avatar
Tri Dao committed
434
        if (n_masking_steps > 1 && n_block <= n_block_min) {
Tri Dao's avatar
Tri Dao committed
435
436
437
438
439
440
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
Tri Dao's avatar
Tri Dao committed
441
    for (; n_block >= n_block_min; --n_block) {
Tri Dao's avatar
Tri Dao committed
442
443
444
445
446
447
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
448
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
449
450
451
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
452
453
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
454
455
456
457
        );

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
458
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
459
460
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
461
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
462
463
464
465
466
467
468
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
Tri Dao's avatar
Tri Dao committed
469
470
471
472
473
474
475
476
477
        if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
            flash::apply_mask_local(
                scores, n_block * kBlockN, binfo.actual_seqlen_k,
                m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
                binfo.actual_seqlen_q, kNWarps * 16,
                params.window_size_left, params.window_size_right
            );
        }
        softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
478
479
480
481
482

        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));
483
484
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
485
486
        if (Return_softmax) {
            Tensor tOrP_copy = make_fragment_like(tOrP);
Tri Dao's avatar
Tri Dao committed
487
            cute::copy(tOrP, tOrP_copy);
Tri Dao's avatar
Tri Dao committed
488
489
490
491
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                tOrP_copy, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, kNWarps
            );
Tri Dao's avatar
Tri Dao committed
492
            flash::write_softmax_to_gmem(tOrP_copy, tPgP, gmem_tiled_copy_P);
Tri Dao's avatar
Tri Dao committed
493
494
495
496
497
498
499
            tPgP.data() = tPgP.data() + (-kBlockN);
        }
        if (Is_dropout) {
            flash::apply_dropout(tOrP, params.p_dropout_in_uint8_t, seed, offset,
                                 block_row_idx, block_col_idx, kNWarps);
        }

Tri Dao's avatar
Tri Dao committed
500
        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    }

    // Epilogue

    // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
    Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
    Tensor lse = make_fragment_like(scores_sum);
    #pragma unroll
    for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
        float sum = scores_sum(mi);
        float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
        lse(mi) = (sum == 0.f || sum != sum) ? INFINITY : scores_max(mi) * params.scale_softmax + __logf(sum);
        float scale = !Is_dropout ? inv_sum : inv_sum * params.rp_dropout;
        #pragma unroll
        for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
    }

    // if (cute::thread0()) { print(acc_o_rowcol); }

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
524
525
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
526
527
528
529
530
531
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
532
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
538
539
540
541
542

    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.o_row_stride, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
543
544
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
545
546
547
548
549
550
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
551
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
577
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
578
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
579
580
581
582
583
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
584
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

Tri Dao's avatar
Tri Dao committed
602
603
604
605
606
607
608
    using GmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::GmemTiledCopyOaccum,
        typename Kernel_traits::GmemTiledCopyO
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
609
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
610
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
611
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
612
613
614
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
Tri Dao's avatar
Tri Dao committed
615
616
617
    const int n_block_min = !Is_local
        ? n_split_idx * n_blocks_per_split
        : std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
618
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
Tri Dao's avatar
Tri Dao committed
619
    if (Is_causal || Is_local) {
Tri Dao's avatar
Tri Dao committed
620
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
621
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
622
623
624
625
626
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
627
628
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
629
630
631
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
632
633
634
635
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
636
637
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
638
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
639
640
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
641
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
659
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
660
661
662
663
664
665
666
667
668
669
670
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
671
672
    const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
Tri Dao's avatar
Tri Dao committed
673
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
674
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
Tri Dao's avatar
Tri Dao committed
675
676
677
678
679
680
681
682
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
683
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
684
685
686
687
688
689
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
690
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});

    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // TODO: this might need to change if we change the mma instruction in SM70
    Tensor scores_max = make_tensor<ElementAccum>(Shape<Int<2 * size<1>(acc_o)>>{});
    Tensor scores_sum = make_fragment_like(scores_max);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

763
764
765
766
767
    // Copy from Knew to K, optionally apply rotary embedding.
    typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
    auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
    auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
768
769
770
771
    if constexpr (Append_KV) {
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        // if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
        // if (cute::thread(8, 0)) { print_tensor(gCos); }
        // if (cute::thread(0, 0)) { print_tensor(tRgCos); }

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
        const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
        Tensor tKgKnew = gmem_thr_copy_QKV.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew = gmem_thr_copy_QKV.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
            if (params.rotary_dim == 0) {
                flash::copy_w_min_idx<Is_even_K>(
                    tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
                );
            } else {
                if (params.is_rotary_interleaved) {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
                } else {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));

                }
            }
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
845
        }
846
        // Need this before we can read in K again, so that we'll see the updated K values.
847
848
849
850
851
852
853
        __syncthreads();
        if (n_block_max > n_block_copy_min) {
            tKgK.data() = tKgK.data() + (n_block_max - n_block_copy_min) * kBlockN * params.k_row_stride;
            tVgV.data() = tVgV.data() + (n_block_max - n_block_copy_min) * kBlockN * params.v_row_stride;
        }
    }

854
    // Read Q from gmem to smem, optionally apply rotary embedding.
Tri Dao's avatar
Tri Dao committed
855
    Tensor tQrQ = make_fragment_like(tQgQ);
856
857
858
859
860
    if (!Append_KV || params.rotary_dim == 0) {
        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
        flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                           binfo.actual_seqlen_q - m_block * kBlockM);
    } else {
Tri Dao's avatar
Tri Dao committed
861
        const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
862
863
864
865
        // If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
        // We do this by setting the row stride of gCos / gSin to 0.
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
866
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
867
868
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
869
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
870
871
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
872
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
873
874
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
875
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        if (params.is_rotary_interleaved) {
            flash::copy_rotary_interleaved<Is_even_K>(
                tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        } else {
            flash::copy_rotary_contiguous<Is_even_K>(
                tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        }
    }
Tri Dao's avatar
Tri Dao committed
892
893
894

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
895
896
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
897
898
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
899
900
901
902
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
903
904
905
906
907
908
909
910
911
912
913

    clear(acc_o);

    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
914
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
Tri Dao's avatar
Tri Dao committed
915
        ? 1
Tri Dao's avatar
Tri Dao committed
916
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
917
918
919
920
921
922
923
924
925
926
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
927
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
928
929
        } else {
            // Clear the smem tiles to account for predicated off loads
930
931
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
932
933
934
935
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
936
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
937
938
939
940
941
942
943
944
945
946
947
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread0()) { print(scores); }
        // We don't put the masking before the matmul S = Q K^T because we don't clear sK
        // for rows outside actual_seqlen_k. So those rows could have Inf / NaN, and the matmul
        // can produce Inf / NaN.
Tri Dao's avatar
Tri Dao committed
948
        if (!Is_causal && !Is_local) {
Tri Dao's avatar
Tri Dao committed
949
950
            if (!Is_even_MN) { flash::apply_mask(scores, binfo.actual_seqlen_k - n_block * kBlockN); }
        } else {
Tri Dao's avatar
Tri Dao committed
951
952
953
954
955
            flash::apply_mask_local(scores, n_block * kBlockN, binfo.actual_seqlen_k,
                                    m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
                                    binfo.actual_seqlen_q, kNWarps * 16,
                                    params.window_size_left, params.window_size_right
                                    );
Tri Dao's avatar
Tri Dao committed
956
957
958
959
        }

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
960
961
962
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
963
964
965
        if (n_block > n_block_min) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
966
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
967
968
969
970
971
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
972
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
973
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
974
975
            ? softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2)
            : softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
976
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

        // Convert scores from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));

        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
1002
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1003
1004
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
1005
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
1015
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1016
1017
1018
1019
1020
1021
1022
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
Tri Dao's avatar
Tri Dao committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
        if (Is_local && n_block * kBlockN < (m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right) {
            flash::apply_mask_local(
                scores, n_block * kBlockN, binfo.actual_seqlen_k,
                m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4,
                binfo.actual_seqlen_q, kNWarps * 16,
                params.window_size_left, params.window_size_right
            );
        }
        softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(scores, scores_max, scores_sum, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

        Tensor rP = flash::convert_type<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMma>(rP.layout()));

        flash::gemm_A_in_regs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
    }

    // Epilogue

    // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
    Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
Tri Dao's avatar
Tri Dao committed
1045
    // if (cute::thread0()) { print(acc_o_rowcol); }
Tri Dao's avatar
Tri Dao committed
1046
1047
1048
1049
1050
    Tensor lse = make_fragment_like(scores_sum);
    #pragma unroll
    for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
        float sum = scores_sum(mi);
        float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
Tri Dao's avatar
Tri Dao committed
1051
        lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : scores_max(mi) * params.scale_softmax + __logf(sum);
Tri Dao's avatar
Tri Dao committed
1052
1053
1054
1055
        float scale = inv_sum;
        #pragma unroll
        for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
    }
Tri Dao's avatar
Tri Dao committed
1056
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
1057
1058
    // if (cute::thread0()) { print(acc_o_rowcol); }

Tri Dao's avatar
Tri Dao committed
1059
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
1060
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1061
1062
1063
1064
1065
1066
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
1067
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1068
1069
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
1070
1071
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1072
1073
1074
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1075
1076
1077

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
1078
1079
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1080
1081
1082
1083
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
    const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

Tri Dao's avatar
Tri Dao committed
1084
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
1085
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
1086
1087
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
1088
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
1089
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
1090

Tri Dao's avatar
Tri Dao committed
1091
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1092
1093
1094
1095
1096
1097
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
1098
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
Tri Dao's avatar
Tri Dao committed
1128
1129
    // __syncthreads();
    // if (cute::thread0()) { print(tOgOaccum); }
Tri Dao's avatar
Tri Dao committed
1130
1131
1132
1133
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
1134
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

Tri Dao's avatar
Tri Dao committed
1150
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1151
1152
1153
1154
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
1155
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1156
1157
1158
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1159
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1160
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1161
1162
1163
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
Tri Dao's avatar
Tri Dao committed
1164
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1165
1166
1167
1168
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1169
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1170
1171
1172
1173
1174
1175
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
1176
    constexpr int kNThreads = Kernel_traits::kNThreads;
Tri Dao's avatar
Tri Dao committed
1177
1178

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
1179
1180
    static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
    static_assert(kNThreads == 128, "We assume that each block has 128 threads");
Tri Dao's avatar
Tri Dao committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
                                   make_stride(params.b * params.h * params.seqlen_q, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
1196
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
Tri Dao's avatar
Tri Dao committed
1197
1198

    // Read the LSE values from gmem and store them in shared memory, then tranpose them.
1199
    constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
Tri Dao's avatar
Tri Dao committed
1200
1201
1202
1203
1204
1205
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
        ElementAccum lse = (row < params.num_splits && col < params.b * params.h * params.seqlen_q - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
1206
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
Tri Dao's avatar
Tri Dao committed
1207
1208
1209
1210
1211
1212
1213
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
1214
    // kBlockM rows, so each time we load we can load 128 / kBlockM rows).
Tri Dao's avatar
Tri Dao committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1233
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1234
1235
1236
1237
1238
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1239
1240
1241
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) { gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum; }
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
1257
1258
1259
1260
1261
1262
1263
    constexpr int kBlockN = kNThreads / kBlockM;
    using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
    using GmemTiledCopyOaccum = decltype(
        make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
                        GmemLayoutAtomOaccum{},
                        Layout<Shape < _1, _4>>{}));  // Val layout, 4 vals per store
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
1295
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
Tri Dao's avatar
Tri Dao committed
1296
1297
1298
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
1299
    // if (cute::thread0()) { print_tensor(tOrO); }
Tri Dao's avatar
Tri Dao committed
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1329
} // namespace flash