setup.py 12.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11
12
13

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
14
15
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
16
17
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel

Tri Dao's avatar
Tri Dao committed
18
19
20
21
22
23
24
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
25
26
27
28

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

29
PACKAGE_NAME = "flash_attn"
Tri Dao's avatar
Tri Dao committed
30

31
BASE_WHEEL_URL = "https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
32
33
34
35
36

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
Tri Dao's avatar
Tri Dao committed
37
38
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
39
40
# For CI, we want the option to not add "--threads 4" to nvcc, since the runner can OOM
FORCE_SINGLE_THREAD = os.getenv("FLASH_ATTENTION_FORCE_SINGLE_THREAD", "FALSE") == "TRUE"
41
42


43
44
def get_platform():
    """
45
    Returns the platform name as used in wheel filenames.
46
47
48
49
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
50
51
        mac_version = '.'.join(platform.mac_ver()[0].split('.')[:2])
        return f'macosx_{mac_version}_x86_64'
52
53
54
55
56
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))

Tri Dao's avatar
Tri Dao committed
57
58
59
60
61

def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
62
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
63

Tri Dao's avatar
Tri Dao committed
64
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
65
66
67


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
68
69
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
70
71
72
73

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
74
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
96
    if not FORCE_SINGLE_THREAD:
Tri Dao's avatar
Tri Dao committed
97
98
99
100
101
102
103
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


cmdclass = {}
ext_modules = []

Tri Dao's avatar
Tri Dao committed
104
105
106
107
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
# files included in the source distribution, in case the user compiles from source.
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

    raise_if_cuda_home_none("flash_attn")
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
Tri Dao's avatar
Tri Dao committed
124
125
    if bare_metal_version < Version("11.4"):
        raise RuntimeError("FlashAttention is only supported on CUDA 11.4 and above")
126
127
    # cc_flag.append("-gencode")
    # cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
128
    cc_flag.append("-gencode")
129
130
131
132
133
    cc_flag.append("arch=compute_80,code=sm_80")
    if bare_metal_version >= Version("11.8"):
        cc_flag.append("-gencode")
        cc_flag.append("arch=compute_90,code=sm_90")

Tri Dao's avatar
Tri Dao committed
134
135
136
137
138
    # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
    # torch._C._GLIBCXX_USE_CXX11_ABI
    # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
    if FORCE_CXX11_ABI:
        torch._C._GLIBCXX_USE_CXX11_ABI = True
139
140
    ext_modules.append(
        CUDAExtension(
141
            name="flash_attn_2_cuda",
142
            sources=[
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                "csrc/flash_attn/flash_api.cpp",
                "csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
                        "--ptxas-options=-v",
191
                        # "--ptxas-options=-O2",
192
193
194
195
196
197
198
199
200
                        "-lineinfo"
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
                Path(this_dir) / 'csrc' / 'flash_attn',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
201
                Path(this_dir) / 'csrc' / 'cutlass' / 'include',
202
203
            ],
        )
Tri Dao's avatar
Tri Dao committed
204
    )
Tri Dao's avatar
Tri Dao committed
205

Tri Dao's avatar
Tri Dao committed
206

207
208
209
210
211
212
213
214
215
216
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
217

218
class CachedWheelsCommand(_bdist_wheel):
Tri Dao's avatar
Tri Dao committed
219
220
221
222
223
224
225
    """
    The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
    find an existing wheel (which is currently the case for all flash attention installs). We use
    the environment parameters to detect whether there is already a pre-built version of a compatible
    wheel available and short-circuits the standard full build pipeline.
    """
    def run(self):
226
        if FORCE_BUILD:
Pierce Freeman's avatar
Pierce Freeman committed
227
            return super().run()
228
229

        # Determine the version numbers that will be used to determine the correct wheel
Tri Dao's avatar
Tri Dao committed
230
231
232
        # We're using the CUDA version used to build torch, not the one currently installed
        # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
        torch_cuda_version = parse(torch.version.cuda)
233
234
235
236
        torch_version_raw = parse(torch.__version__)
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
Tri Dao's avatar
Tri Dao committed
237
238
239
240
        # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
        cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
        torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
        cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
241
242

        # Determine wheel URL based on CUDA version, torch version, python version and OS
Tri Dao's avatar
Tri Dao committed
243
        wheel_filename = f'{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl'
244
245
246
247
248
        wheel_url = BASE_WHEEL_URL.format(
            tag_name=f"v{flash_version}",
            wheel_name=wheel_filename
        )
        print("Guessing wheel URL: ", wheel_url)
249

250
251
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
252
253
254
255
256
257
258
259
260

            # Make the archive
            # Lifted from the root wheel processing command
            # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
            if not os.path.exists(self.dist_dir):
                os.makedirs(self.dist_dir)

            impl_tag, abi_tag, plat_tag = self.get_tag()
            archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
261

262
263
264
            wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
            print("Raw wheel path", wheel_path)
            os.rename(wheel_filename, wheel_path)
265
266
267
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
268
            super().run()
269
270


Tri Dao's avatar
Tri Dao committed
271
setup(
272
    name=PACKAGE_NAME,
273
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
274
275
276
277
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
Tri Dao's avatar
Tri Dao committed
278
    author_email="trid@cs.stanford.edu",
Tri Dao's avatar
Tri Dao committed
279
280
281
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
Tri Dao's avatar
Tri Dao committed
282
    url="https://github.com/Dao-AILab/flash-attention",
Tri Dao's avatar
Tri Dao committed
283
284
    classifiers=[
        "Programming Language :: Python :: 3",
285
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
286
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
287
    ],
Tri Dao's avatar
Tri Dao committed
288
    ext_modules=ext_modules,
289
    cmdclass={
290
        'bdist_wheel': CachedWheelsCommand,
291
292
        "build_ext": BuildExtension
    } if ext_modules else {
293
        'bdist_wheel': CachedWheelsCommand,
294
    },
Gustaf's avatar
Gustaf committed
295
296
297
298
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
299
        "packaging",
300
        "ninja",
Gustaf's avatar
Gustaf committed
301
    ],
Tri Dao's avatar
Tri Dao committed
302
)