"test/srt/test_mla_int8_deepseek_v3.py" did not exist on "9fb48f951f8620d4ad255a2abb2b2aa779ab9d9a"
flash_fwd_kernel.h 69.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
17
#include "mask.h"
18
#include "dropout.h"
19
#include "rotary.h"
20

Tri Dao's avatar
Tri Dao committed
21
22
23
24
25
26
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

27
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

45
46
47
    auto seed_offset = at::cuda::philox::unpack(params.philox_args);
    flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);
Tri Dao's avatar
Tri Dao committed
48
49
50
51

    // Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
    // exit early and no one saves the rng states.
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
52
53
        params.rng_state[0] = std::get<0>(seed_offset);
        params.rng_state[1] = std::get<1>(seed_offset);
Tri Dao's avatar
Tri Dao committed
54
55
    }

56
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
57
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
Tri Dao's avatar
Tri Dao committed
58

Tri Dao's avatar
Tri Dao committed
59
    const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
60
    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
Tri Dao's avatar
Tri Dao committed
61
    if (Is_causal || Is_local) {
62
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
63
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
64
65
66
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    }
    // We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
    // Otherwise we might read OOB elements from gK and gV.
    if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
        const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
        Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                                Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                make_stride(params.o_row_stride, _1{}));
        Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                                  Shape<Int<kBlockM>>{}, Stride<_1>{});

        typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
        Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
        Tensor tOrO = make_tensor<Element>(shape(tOgO));
        clear(tOrO);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        if (!Is_even_K) {
91
            #pragma unroll
92
93
94
95
96
97
98
99
100
101
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgO); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
102
        }
103
        return;
Tri Dao's avatar
Tri Dao committed
104
    }
Tri Dao's avatar
Tri Dao committed
105
    // if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
skrider's avatar
skrider committed
139

Tri Dao's avatar
Tri Dao committed
140
141
142
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
skrider's avatar
skrider committed
143

Tri Dao's avatar
Tri Dao committed
144
145
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
146
147
148
149
150
151
152

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
skrider's avatar
skrider committed
153

Tri Dao's avatar
Tri Dao committed
154
155
156
157
158
    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)
skrider's avatar
skrider committed
159

Tri Dao's avatar
Tri Dao committed
160
161
    Tensor tSgS  = thr_mma.partition_C(gP);

Tri Dao's avatar
Tri Dao committed
162
    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K
skrider's avatar
skrider committed
163

Tri Dao's avatar
Tri Dao committed
164
165
166
167
    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
168
169
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
170
171
172
173
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
174
175
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
176
177
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

Tri Dao's avatar
Tri Dao committed
178
179
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
225
226
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
227
228
229
230
231
232
233
234
235
236
237
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
238
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
239
240
241
242
243
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
244
245
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
246
247
248
249
250
251
252
253
254
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
255
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
256
257
258
259
    }

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
260
261
    flash::Softmax<2 * size<1>(acc_o)> softmax;

262
263
    const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
264

Tri Dao's avatar
Tri Dao committed
265
266
267
268
269
270
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

271
272
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
273
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
274
        ? 1
Tri Dao's avatar
Tri Dao committed
275
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
276
277
278
279
280
281
282
283
284
285
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
286
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
287
288
        } else {
            // Clear the smem tiles to account for predicated off loads
289
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
290
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
291
292
293
294
295
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
296
297
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
298
299
300
        );
        // if (cute::thread0()) { print(acc_s); }

301
302
303
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
304
305
306

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
307
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
308
309
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
310
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
311
312
313
314
315
316
317
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
318
319
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
320

321
322
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
323
324
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
325
        if (Return_softmax) {
326
327
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
328
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
329
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
330
            );
331
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
332
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
333
334
        }
        if (Is_dropout) {
335
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
336
337
        }

338
339
340
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
341
        // if (cute::thread0()) { print(tOrP); }
342
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
343
344
345
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
Tri Dao's avatar
Tri Dao committed
346
        if (n_masking_steps > 1 && n_block <= n_block_min) {
Tri Dao's avatar
Tri Dao committed
347
348
349
350
351
352
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
Tri Dao's avatar
Tri Dao committed
353
    for (; n_block >= n_block_min; --n_block) {
Tri Dao's avatar
Tri Dao committed
354
355
356
357
358
359
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
        tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
360
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
361
362
363
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
364
365
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
366
367
368
369
        );

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
370
        if (n_block > n_block_min) {
Tri Dao's avatar
Tri Dao committed
371
372
            // Advance gK
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
Tri Dao's avatar
Tri Dao committed
373
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
374
375
376
377
378
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

379
380
381
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
382

Tri Dao's avatar
Tri Dao committed
383
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
384

385
        Tensor rP = flash::convert_type<Element>(acc_s);
386
387
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
388
        if (Return_softmax) {
389
390
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
391
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
392
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
393
            );
394
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
395
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
396
397
        }
        if (Is_dropout) {
398
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
399
400
        }

401
402
403
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
404
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
405
406
407
408
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
409
    Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
Tri Dao's avatar
Tri Dao committed
410
411
412
413
414

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
415
416
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
417
418
419
420
421
422
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
423
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
424
425
426
427
428
429
430
431
432
433

    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.o_row_stride, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
434
435
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
441
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
442
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
468
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
469
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
470
471
472
473
474
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

475
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

Tri Dao's avatar
Tri Dao committed
493
494
495
496
497
498
499
    using GmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::GmemTiledCopyOaccum,
        typename Kernel_traits::GmemTiledCopyO
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
500
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
501
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
502
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
503
504
505
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
Tri Dao's avatar
Tri Dao committed
506
507
508
    const int n_block_min = !Is_local
        ? n_split_idx * n_blocks_per_split
        : std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
509
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
Tri Dao's avatar
Tri Dao committed
510
    if (Is_causal || Is_local) {
Tri Dao's avatar
Tri Dao committed
511
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
512
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
513
514
515
516
517
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
518
519
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
520
521
522
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
523
524
525
526
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
527
528
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
529
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
530
531
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
532
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
550
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
551
552
553
554
555
556
557
558
559
560
561
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
562
    const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
Tri Dao's avatar
Tri Dao committed
563
564
565
566
    const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
    const index_t row_offset_k = block_table == nullptr
        ? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
skrider's avatar
skrider committed
567
        : (bidh / params.h_h_k_ratio) * params.k_head_stride; // block addresses are later resolved per-thread
skrider's avatar
skrider committed
568

Tri Dao's avatar
Tri Dao committed
569
570
571
    const index_t row_offset_v = block_table == nullptr
        ? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
skrider's avatar
skrider committed
572
        : (bidh / params.h_h_k_ratio) * params.v_head_stride;
Tri Dao's avatar
Tri Dao committed
573

skrider's avatar
skrider committed
574
575
    

Tri Dao's avatar
Tri Dao committed
576
577
578
579
580
581
    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
582
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
583
584
585
586
587
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
588
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
589
590
591
592
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
    Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});

skrider's avatar
skrider committed
593
594
595
596
597
598
599
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_Q;
    auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyQKVPaged gmem_tiled_copy_KV;
    auto gmem_thr_copy_KV = gmem_tiled_copy_KV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
skrider's avatar
skrider committed
600

skrider's avatar
skrider committed
601
602
603
604
605
    Tensor tKgK_ = gmem_thr_copy_KV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK_ = gmem_thr_copy_KV.partition_D(sK);
    Tensor tVgV_ = gmem_thr_copy_KV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV_ = gmem_thr_copy_KV.partition_D(sV);

skrider's avatar
skrider committed
606
607
608
609
    Tensor tKgK = make_tensor(tKgK_.data(), reshape_thread_tile(tKgK_.layout()));
    Tensor tKsK = make_tensor(tKsK_.data(), reshape_thread_tile(tKsK_.layout()));
    Tensor tVgV = make_tensor(tVgV_.data(), reshape_thread_tile(tVgV_.layout()));
    Tensor tVsV = make_tensor(tVsV_.data(), reshape_thread_tile(tVsV_.layout()));
skrider's avatar
skrider committed
610
611

    if (block_table != nullptr) {
skrider's avatar
skrider committed
612
        tKgK.data() = gK.data() + flash::init_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block_max, params.page_block_size,
skrider's avatar
skrider committed
613
            block_table, params.k_batch_stride, params.k_row_stride);
skrider's avatar
skrider committed
614
        tVgV.data() = gV.data() + flash::init_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block_max, params.page_block_size,
skrider's avatar
skrider committed
615
616
            block_table, params.v_batch_stride, params.v_row_stride);
    }
Tri Dao's avatar
Tri Dao committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)

    // Repeat the partitioning with identity layouts
skrider's avatar
skrider committed
654
655
    Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_KV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
Tri Dao's avatar
Tri Dao committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

671
672
673
674
675
    // Copy from Knew to K, optionally apply rotary embedding.
    typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
    auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
    auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
676
677
678
679
    if constexpr (Append_KV) {
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        // if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
        // if (cute::thread(8, 0)) { print_tensor(gCos); }
        // if (cute::thread(0, 0)) { print_tensor(tRgCos); }

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
        const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
skrider's avatar
skrider committed
717
718
719
720
721
        typename Kernel_traits::GmemTiledCopyQKVPaged gmem_tiled_copy_KV_new;
        auto gmem_thr_copy_KV_new = gmem_tiled_copy_KV_new.get_thread_slice(tidx);
        Tensor tKgKnew_ = gmem_thr_copy_KV_new.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew_ = gmem_thr_copy_KV_new.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)

skrider's avatar
skrider committed
722
723
        auto tKgKnew = make_tensor(tKgKnew_.data(), reshape_thread_tile(tKgKnew_.layout()));
        auto tVgVnew = make_tensor(tVgVnew_.data(), reshape_thread_tile(tVgVnew_.layout()));
724
725

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
Tri Dao's avatar
Tri Dao committed
726
727
        auto tKgK_data = tKgK.data();
        auto tVgV_data = tVgV.data();
728
729
730
731
732
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
            if (params.rotary_dim == 0) {
                flash::copy_w_min_idx<Is_even_K>(
                    tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
                );
            } else {
                if (params.is_rotary_interleaved) {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
                } else {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));

                }
            }
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
Tri Dao's avatar
Tri Dao committed
758
759
760
761
762
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                if (n_block > n_block_copy_min) {
763
764
765
766
                    tVgV.data() = tVgV.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
                        block_table, params.v_batch_stride, params.v_row_stride);
                    tKgK.data() = tKgK.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
                        block_table, params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
767
768
                }
            }
769
        }
770
        // Need this before we can read in K again, so that we'll see the updated K values.
771
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
772
773
        tKgK.data() = tKgK_data;
        tVgV.data() = tVgV_data;
774
775
    }

776
777
778
    // Read Q from gmem to smem, optionally apply rotary embedding.
    if (!Append_KV || params.rotary_dim == 0) {
        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
skrider's avatar
skrider committed
779
        flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
780
781
                                           binfo.actual_seqlen_q - m_block * kBlockM);
    } else {
Tri Dao's avatar
Tri Dao committed
782
        const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
783
784
785
786
        // If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
        // We do this by setting the row stride of gCos / gSin to 0.
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
787
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
788
789
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
790
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
791
792
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
793
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
794
795
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
796
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        if (params.is_rotary_interleaved) {
            flash::copy_rotary_interleaved<Is_even_K>(
                tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        } else {
            flash::copy_rotary_contiguous<Is_even_K>(
                tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        }
    }
Tri Dao's avatar
Tri Dao committed
813
814
815

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
skrider's avatar
skrider committed
816
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV,
817
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
818
819
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
820
821
822
823
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
824
825
826

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
827
828
    flash::Softmax<2 * size<1>(acc_o)> softmax;

Tri Dao's avatar
Tri Dao committed
829
    const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
830
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
831

Tri Dao's avatar
Tri Dao committed
832
833
834
835
836
837
838
839
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
840
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
Tri Dao's avatar
Tri Dao committed
841
        ? 1
Tri Dao's avatar
Tri Dao committed
842
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
843
844
845
846
847
848
849
850
851
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
Tri Dao's avatar
Tri Dao committed
852
853
854
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            } else {
855
856
                tVgV.data() = tVgV.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block + 1, params.page_block_size,
                    block_table, params.v_batch_stride, params.v_row_stride);
Tri Dao's avatar
Tri Dao committed
857
            }
skrider's avatar
skrider committed
858
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
859
860
        } else {
            // Clear the smem tiles to account for predicated off loads
861
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
skrider's avatar
skrider committed
862
                gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
863
864
865
866
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
867
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
868
869
870
871
872
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }

873
874
875
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
876
877
878

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
879
880
881
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
882
883
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
884
885
886
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
887
888
                tKgK.data() = tKgK.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
                    block_table, params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
889
            }
skrider's avatar
skrider committed
890
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
891
892
893
894
895
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
896
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
897
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
898
899
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
900
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
901

902
903
904
905
906
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
907

908
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
Tri Dao's avatar
Tri Dao committed
924
925
926
        if (block_table == nullptr) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
        } else {
927
            tVgV.data() = tVgV.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block + 1, params.page_block_size, 
928
                block_table, params.v_batch_stride, params.v_row_stride);
Tri Dao's avatar
Tri Dao committed
929
        }
skrider's avatar
skrider committed
930
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
931
932
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
933
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
934
935
936
937
938
939
940
941
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
942
943
944
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
skrider's avatar
skrider committed
945
                tKgK.data() = tKgK.data() + flash::advance_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
946
                    block_table, params.k_batch_stride, params.k_row_stride);            
Tri Dao's avatar
Tri Dao committed
947
            }
skrider's avatar
skrider committed
948
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
949
950
951
952
953
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

954
955
956
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
957
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
958

959
960
961
962
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
963

964
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
965
966
967
968
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
969
    Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
Tri Dao's avatar
Tri Dao committed
970
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
971

Tri Dao's avatar
Tri Dao committed
972
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
973
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
974
975
976
977
978
979
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
980
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
981
982
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
983
984
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
985
986
987
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
988
989
990

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
991
992
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
993
994
995
996
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
    const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

Tri Dao's avatar
Tri Dao committed
997
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
998
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
999
1000
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
1001
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
1002
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
1003

Tri Dao's avatar
Tri Dao committed
1004
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1005
1006
1007
1008
1009
1010
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
1011
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
Tri Dao's avatar
Tri Dao committed
1041
1042
    // __syncthreads();
    // if (cute::thread0()) { print(tOgOaccum); }
Tri Dao's avatar
Tri Dao committed
1043
1044
1045
1046
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1047
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

1063
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1064
1065
1066
1067
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1068
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1069
1070
1071
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1072
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1073
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1074
1075
1076
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
1077
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1078
1079
1080
1081
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1082
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1083
1084
1085
1086
1087
1088
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
1089
    constexpr int kNThreads = Kernel_traits::kNThreads;
Tri Dao's avatar
Tri Dao committed
1090
1091

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
1092
1093
    static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
    static_assert(kNThreads == 128, "We assume that each block has 128 threads");
Tri Dao's avatar
Tri Dao committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
                                   make_stride(params.b * params.h * params.seqlen_q, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
1109
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
Tri Dao's avatar
Tri Dao committed
1110
1111

    // Read the LSE values from gmem and store them in shared memory, then tranpose them.
1112
    constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
Tri Dao's avatar
Tri Dao committed
1113
1114
1115
1116
1117
1118
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
        ElementAccum lse = (row < params.num_splits && col < params.b * params.h * params.seqlen_q - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
1119
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
Tri Dao's avatar
Tri Dao committed
1120
1121
1122
1123
1124
1125
1126
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
1127
    // kBlockM rows, so each time we load we can load 128 / kBlockM rows).
Tri Dao's avatar
Tri Dao committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1146
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1147
1148
1149
1150
1151
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1152
1153
1154
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) { gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum; }
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
1170
1171
1172
1173
1174
1175
1176
    constexpr int kBlockN = kNThreads / kBlockM;
    using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
    using GmemTiledCopyOaccum = decltype(
        make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
                        GmemLayoutAtomOaccum{},
                        Layout<Shape < _1, _4>>{}));  // Val layout, 4 vals per store
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
1208
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
Tri Dao's avatar
Tri Dao committed
1209
1210
1211
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
1212
    // if (cute::thread0()) { print_tensor(tOrO); }
Tri Dao's avatar
Tri Dao committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1242
} // namespace flash