setup.py 13.5 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11
12
13

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
14
15
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
16
17
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel

Tri Dao's avatar
Tri Dao committed
18
19
20
21
22
23
24
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
25
26
27
28

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

29
PACKAGE_NAME = "flash_attn"
Tri Dao's avatar
Tri Dao committed
30

31
BASE_WHEEL_URL = "https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
32
33
34
35
36

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
Tri Dao's avatar
Tri Dao committed
37
38
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
39
40
# For CI, we want the option to not add "--threads 4" to nvcc, since the runner can OOM
FORCE_SINGLE_THREAD = os.getenv("FLASH_ATTENTION_FORCE_SINGLE_THREAD", "FALSE") == "TRUE"
41
42


43
44
def get_platform():
    """
45
    Returns the platform name as used in wheel filenames.
46
47
48
49
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
50
51
        mac_version = '.'.join(platform.mac_ver()[0].split('.')[:2])
        return f'macosx_{mac_version}_x86_64'
52
53
54
55
56
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))

Tri Dao's avatar
Tri Dao committed
57
58
59
60
61

def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
62
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
63

Tri Dao's avatar
Tri Dao committed
64
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
65
66


67
def check_if_cuda_home_none(global_option: str) -> None:
Tri Dao's avatar
Tri Dao committed
68
69
    if CUDA_HOME is not None:
        return
70
71
72
    # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
    # in that case.
    warnings.warn(
Tri Dao's avatar
Tri Dao committed
73
74
75
76
77
78
79
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
80
    if not FORCE_SINGLE_THREAD:
Tri Dao's avatar
Tri Dao committed
81
82
83
84
85
86
87
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


cmdclass = {}
ext_modules = []

Tri Dao's avatar
Tri Dao committed
88
89
90
91
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
# files included in the source distribution, in case the user compiles from source.
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])

92
93
94
95
96
97
98
99
100
101
102
103
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

104
    check_if_cuda_home_none("flash_attn")
105
106
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
107
108
109
110
    if CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version < Version("11.6"):
            raise RuntimeError("FlashAttention is only supported on CUDA 11.6 and above")
111
112
    # cc_flag.append("-gencode")
    # cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
113
    cc_flag.append("-gencode")
114
    cc_flag.append("arch=compute_80,code=sm_80")
115
116
117
118
    if CUDA_HOME is not None:
        if bare_metal_version >= Version("11.8"):
            cc_flag.append("-gencode")
            cc_flag.append("arch=compute_90,code=sm_90")
119

Tri Dao's avatar
Tri Dao committed
120
121
122
123
124
    # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
    # torch._C._GLIBCXX_USE_CXX11_ABI
    # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
    if FORCE_CXX11_ABI:
        torch._C._GLIBCXX_USE_CXX11_ABI = True
125
126
    ext_modules.append(
        CUDAExtension(
127
            name="flash_attn_2_cuda",
128
            sources=[
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                "csrc/flash_attn/flash_api.cpp",
                "csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
Tri Dao's avatar
Tri Dao committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                "csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
Tri Dao's avatar
Tri Dao committed
192
                        # "--ptxas-options=-v",
193
                        # "--ptxas-options=-O2",
194
195
196
197
198
199
200
201
202
                        "-lineinfo"
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
                Path(this_dir) / 'csrc' / 'flash_attn',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
203
                Path(this_dir) / 'csrc' / 'cutlass' / 'include',
204
205
            ],
        )
Tri Dao's avatar
Tri Dao committed
206
    )
Tri Dao's avatar
Tri Dao committed
207

Tri Dao's avatar
Tri Dao committed
208

209
210
211
212
213
214
215
216
217
218
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def get_wheel_url():
    # Determine the version numbers that will be used to determine the correct wheel
    # We're using the CUDA version used to build torch, not the one currently installed
    # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
    torch_cuda_version = parse(torch.version.cuda)
    torch_version_raw = parse(torch.__version__)
    python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
    platform_name = get_platform()
    flash_version = get_package_version()
    # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
    cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
    torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
    cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()

    # Determine wheel URL based on CUDA version, torch version, python version and OS
    wheel_filename = f'{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl'
    wheel_url = BASE_WHEEL_URL.format(
        tag_name=f"v{flash_version}",
        wheel_name=wheel_filename
    )
    return wheel_url, wheel_filename


243
class CachedWheelsCommand(_bdist_wheel):
Tri Dao's avatar
Tri Dao committed
244
245
246
247
248
249
250
    """
    The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
    find an existing wheel (which is currently the case for all flash attention installs). We use
    the environment parameters to detect whether there is already a pre-built version of a compatible
    wheel available and short-circuits the standard full build pipeline.
    """
    def run(self):
251
        if FORCE_BUILD:
Pierce Freeman's avatar
Pierce Freeman committed
252
            return super().run()
253

254
        wheel_url, wheel_filename = get_wheel_url()
255
256
257
        print("Guessing wheel URL: ", wheel_url)
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
258
259
260
261
262
263
264
265
266

            # Make the archive
            # Lifted from the root wheel processing command
            # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
            if not os.path.exists(self.dist_dir):
                os.makedirs(self.dist_dir)

            impl_tag, abi_tag, plat_tag = self.get_tag()
            archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
267

268
269
270
            wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
            print("Raw wheel path", wheel_path)
            os.rename(wheel_filename, wheel_path)
271
272
273
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
274
            super().run()
275
276


Tri Dao's avatar
Tri Dao committed
277
setup(
278
    name=PACKAGE_NAME,
279
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
280
281
282
283
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
Tri Dao's avatar
Tri Dao committed
284
    author_email="trid@cs.stanford.edu",
Tri Dao's avatar
Tri Dao committed
285
286
287
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
Tri Dao's avatar
Tri Dao committed
288
    url="https://github.com/Dao-AILab/flash-attention",
Tri Dao's avatar
Tri Dao committed
289
290
    classifiers=[
        "Programming Language :: Python :: 3",
291
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
292
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
293
    ],
Tri Dao's avatar
Tri Dao committed
294
    ext_modules=ext_modules,
295
    cmdclass={
296
        'bdist_wheel': CachedWheelsCommand,
297
298
        "build_ext": BuildExtension
    } if ext_modules else {
299
        'bdist_wheel': CachedWheelsCommand,
300
    },
Gustaf's avatar
Gustaf committed
301
302
303
304
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
305
        "packaging",
306
        "ninja",
Gustaf's avatar
Gustaf committed
307
    ],
Tri Dao's avatar
Tri Dao committed
308
)