setup.py 10.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
Tri Dao's avatar
Tri Dao committed
9
10
11
12

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
13
14
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
15
16
17
18
19
20
21
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
22
23
24
25
26

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def get_platform():
    """
    Returns the platform string.
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
        return 'macosx_10_9_x86_64'
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))

from setuptools.command.install import install

# @pierce - TODO: Remove for proper release
BASE_WHEEL_URL = "https://github.com/piercefreeman/flash-attention/releases/download/{tag_name}/{wheel_name}"

class CustomInstallCommand(install):
    def run(self):
Pierce Freeman's avatar
Pierce Freeman committed
47
48
49
        if os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE":
            return install.run(self)

Pierce Freeman's avatar
Pierce Freeman committed
50
51
        raise_if_cuda_home_none("flash_attn")

52
        # Determine the version numbers that will be used to determine the correct wheel
Pierce Freeman's avatar
Pierce Freeman committed
53
        _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
54
55
56
57
        torch_version = torch.__version__
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
Pierce Freeman's avatar
Pierce Freeman committed
58
        cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
59
60
61
62

        # Determine wheel URL based on CUDA version, torch version, python version and OS
        wheel_filename = f'flash_attn-{flash_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl'
        wheel_url = BASE_WHEEL_URL.format(
Pierce Freeman's avatar
Pierce Freeman committed
63
64
            #tag_name=f"v{flash_version}",
            # HACK
Pierce Freeman's avatar
Pierce Freeman committed
65
            tag_name=f"v0.0.5",
66
67
            wheel_name=wheel_filename
        )
Pierce Freeman's avatar
Pierce Freeman committed
68
        print("Guessing wheel URL: ", wheel_url)
69
70
71
72
73
74
75
76
        
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
            os.system(f'pip install {wheel_filename}')
            os.remove(wheel_filename)
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
Pierce Freeman's avatar
Pierce Freeman committed
77
78
79
            #install.run(self)
            raise ValueError

80

Tri Dao's avatar
Tri Dao committed
81
82
83
84
def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
85
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
86

Tri Dao's avatar
Tri Dao committed
87
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
88
89
90


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
91
92
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
93
94
95
96

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
97
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
119
120
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
132
133
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
134
135
136
137
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
138
139
140
141
142
143
144
145
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
146
        else:
Tri Dao's avatar
Tri Dao committed
147
148
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])

cmdclass = {}
ext_modules = []

# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
    generator_flag = ["-DOLD_GENERATOR_PATH"]

Tri Dao's avatar
Tri Dao committed
164
raise_if_cuda_home_none("flash_attn")
Tri Dao's avatar
Tri Dao committed
165
166
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
Tri Dao's avatar
Tri Dao committed
167
168
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.0"):
169
    raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
Tri Dao's avatar
Tri Dao committed
170
171
cc_flag.append("-gencode")
cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
172
173
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
Tri Dao's avatar
Tri Dao committed
174
175
176
if bare_metal_version >= Version("11.8"):
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_90,code=sm_90")
Tri Dao's avatar
Tri Dao committed
177

Tri Dao's avatar
Tri Dao committed
178
subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
Tri Dao's avatar
Tri Dao committed
179
180
ext_modules.append(
    CUDAExtension(
Tri Dao's avatar
Tri Dao committed
181
        name="flash_attn_cuda",
Tri Dao's avatar
Tri Dao committed
182
        sources=[
Tri Dao's avatar
Tri Dao committed
183
            "csrc/flash_attn/fmha_api.cpp",
184
185
186
187
188
189
            "csrc/flash_attn/src/fmha_fwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim128.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim128.cu",
Tri Dao's avatar
Tri Dao committed
190
191
            "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
            "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
Tri Dao's avatar
Tri Dao committed
192
193
        ],
        extra_compile_args={
194
            "cxx": ["-O3", "-std=c++17"] + generator_flag,
Tri Dao's avatar
Tri Dao committed
195
196
197
            "nvcc": append_nvcc_threads(
                [
                    "-O3",
198
                    "-std=c++17",
Tri Dao's avatar
Tri Dao committed
199
200
                    "-U__CUDA_NO_HALF_OPERATORS__",
                    "-U__CUDA_NO_HALF_CONVERSIONS__",
201
202
                    "-U__CUDA_NO_HALF2_OPERATORS__",
                    "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
Tri Dao's avatar
Tri Dao committed
203
204
205
206
207
208
209
210
211
212
213
                    "--expt-relaxed-constexpr",
                    "--expt-extended-lambda",
                    "--use_fast_math",
                    "--ptxas-options=-v",
                    "-lineinfo"
                ]
                + generator_flag
                + cc_flag
            ),
        },
        include_dirs=[
Tri Dao's avatar
Tri Dao committed
214
215
            Path(this_dir) / 'csrc' / 'flash_attn',
            Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
Tri Dao's avatar
Tri Dao committed
216
            Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
Tri Dao's avatar
Tri Dao committed
217
218
219
220
        ],
    )
)

221
222
223
224
225
226
227
228
229
230
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
231
setup(
Tri Dao's avatar
Tri Dao committed
232
    name="flash_attn",
233
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
234
235
236
237
238
239
240
241
242
243
244
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
    author_email="trid@stanford.edu",
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
    url="https://github.com/HazyResearch/flash-attention",
    classifiers=[
        "Programming Language :: Python :: 3",
245
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
246
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
247
    ],
Tri Dao's avatar
Tri Dao committed
248
    ext_modules=ext_modules,
249
250
251
252
253
254
    cmdclass={
        'install': CustomInstallCommand,
        "build_ext": BuildExtension
    } if ext_modules else {
        'install': CustomInstallCommand,
    },
Gustaf's avatar
Gustaf committed
255
256
257
258
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
259
        "packaging",
260
        "ninja",
Gustaf's avatar
Gustaf committed
261
    ],
Tri Dao's avatar
Tri Dao committed
262
)